The Red-crowned Crane (Grus japonensis) is a globally endangered species.Although this species has received much attention by scientists,conservationists and the general public,the continental population of the Red-cr...The Red-crowned Crane (Grus japonensis) is a globally endangered species.Although this species has received much attention by scientists,conservationists and the general public,the continental population of the Red-crowned Crane continues to face serious threats which affect not only its population dynamics but also its breeding and wintering habitats.Habitat loss and deterioration are the main causes of the decline of its population.With the massive loss of habitats in all parts of its range - breeding,stopover and wintering grounds - the cranes have been forced into crops and farmlands where cranes are more vulnerable to human activities,such as poisoning the cranes and conflicts with farmers.From our review of studies done over 30 years,the eastern flyway subpopulation has been stable or slightly increasing and the western flyway subpopulation of the Red-crowned Crane has sharply declined in recent years.The wintering population for the western flyway has declined from over 1100 to less than 500 birds.Not only is the size of the population reduced to less than 50%,but most recently the decline has occurred with frightening speed,by 50-150 birds per winter.The current wintering range for the west flyway is only about 8% of its extent in the 1980s.Urgent actions for habitat protection,law enforcement and education need to stop the declining trend for this species.展开更多
The protection, restoration and sustainable use are key issues of all the wetlands worldwide. Ecological, agronomic, and engineering techniques have been integrated in the development of a structurally sound, ecologic...The protection, restoration and sustainable use are key issues of all the wetlands worldwide. Ecological, agronomic, and engineering techniques have been integrated in the development of a structurally sound, ecologically beneficial engineering restoration method for restoring and utilizing a degraded saline wetland in the western Songnen Plain of China. Hydrological restoration was performed by developing a system of biannual irrigation and drainage using civil engineering measures to bring wetlands into contact with river water and improve the irrigation and drainage system in the wetlands. Agronomic measures such as plowing the reed fields, reed rhizome transplantation, and fertilization were used to restore the reed vegetation. Biological measures, including the release of crab and fish fry and natural proliferation, were used to restore the aquatic communities. The results of the restoration were clear and positive. By the year 2009, the reed yield had increased by 20.9 times. Remarkable ecological benefits occurred simultaneously. Vegetation primary-production capacity increased, local climate regulation and water purification enhanced, and biodiversity increased. This demonstration of engineering techniques illustrates the basic route for the restoration of degraded wetlands, that the biodiversity should be reconstructed by the comprehensive application of engineering, biological, and agronomic measures based on habitat restoration under the guidance of process-oriented strategies. The complex ecological system including reeds, fish and crabs is based on the biological principles of coexistence and material recycling and provides a reasonable ecological engineering model suitable for the sustainable utilization of degraded saline reed wetlands.展开更多
文摘The Red-crowned Crane (Grus japonensis) is a globally endangered species.Although this species has received much attention by scientists,conservationists and the general public,the continental population of the Red-crowned Crane continues to face serious threats which affect not only its population dynamics but also its breeding and wintering habitats.Habitat loss and deterioration are the main causes of the decline of its population.With the massive loss of habitats in all parts of its range - breeding,stopover and wintering grounds - the cranes have been forced into crops and farmlands where cranes are more vulnerable to human activities,such as poisoning the cranes and conflicts with farmers.From our review of studies done over 30 years,the eastern flyway subpopulation has been stable or slightly increasing and the western flyway subpopulation of the Red-crowned Crane has sharply declined in recent years.The wintering population for the western flyway has declined from over 1100 to less than 500 birds.Not only is the size of the population reduced to less than 50%,but most recently the decline has occurred with frightening speed,by 50-150 birds per winter.The current wintering range for the west flyway is only about 8% of its extent in the 1980s.Urgent actions for habitat protection,law enforcement and education need to stop the declining trend for this species.
基金Under the auspices of National Natural Science Foundation of China (No. 41101469)National Key Technology Research and Development Program of China (No. 2009BADB3B02)Science and Technology Development Foundation of Jiilin Province (No. 20080402-1)
文摘The protection, restoration and sustainable use are key issues of all the wetlands worldwide. Ecological, agronomic, and engineering techniques have been integrated in the development of a structurally sound, ecologically beneficial engineering restoration method for restoring and utilizing a degraded saline wetland in the western Songnen Plain of China. Hydrological restoration was performed by developing a system of biannual irrigation and drainage using civil engineering measures to bring wetlands into contact with river water and improve the irrigation and drainage system in the wetlands. Agronomic measures such as plowing the reed fields, reed rhizome transplantation, and fertilization were used to restore the reed vegetation. Biological measures, including the release of crab and fish fry and natural proliferation, were used to restore the aquatic communities. The results of the restoration were clear and positive. By the year 2009, the reed yield had increased by 20.9 times. Remarkable ecological benefits occurred simultaneously. Vegetation primary-production capacity increased, local climate regulation and water purification enhanced, and biodiversity increased. This demonstration of engineering techniques illustrates the basic route for the restoration of degraded wetlands, that the biodiversity should be reconstructed by the comprehensive application of engineering, biological, and agronomic measures based on habitat restoration under the guidance of process-oriented strategies. The complex ecological system including reeds, fish and crabs is based on the biological principles of coexistence and material recycling and provides a reasonable ecological engineering model suitable for the sustainable utilization of degraded saline reed wetlands.