In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results ...In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.展开更多
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricte...The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.展开更多
基金supported by the Application Foundation Item of Science and Technology Department of Jilin Province (Grant No. 2011-05013)the National Natural Science Foundation of China (Grant No. 50879028)
文摘In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.
基金Under the auspices of National Natural Science Foundation(No.50879028)Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Nanjing Hydraulic Research institute(No.2009491311)+1 种基金Open Research Fund Program of State key Laboratory of Hydroscience and Engineering,Tsinghua University(No.sklhse-2010-A-02)Application Foundation Items of Science and Technology Department of Jilin Province(No.2011-05013)
文摘The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.