The method of two-step melt blending was used to prepare polycarbonate/polypropylene/attapulgite ternary nanocomposite, and the various techniques including gel permeation chromatography, rheometer, transmis- sion ele...The method of two-step melt blending was used to prepare polycarbonate/polypropylene/attapulgite ternary nanocomposite, and the various techniques including gel permeation chromatography, rheometer, transmis- sion electron microscope, dynamic mechanical analysis were used to examine the degradation of polycarbonate (PC) and the nanocomposite morphology. The results showed that the molecular weight degradation of PC triggered by attapulgite (AT) during the direct blending process was inhibited effectively by using two-step melt blending, in which AT was blended with polypropylene (PP) prior to compound with PC. The morphology of encapsulation was formed in the PC matrix, where PP encapsulates AT fibrillar single crystals to form a core-shell inclusion. Dynamic mechanical analysis (DMA) measurements showed that the PC/PP/AT ternary nanocomposites were more effective than conventional PC/PP blends in reinforcement, meanwhile the addition of AT in the ternary nanocomposites shifted the glass transition temperature of the PP phase to a higher value.展开更多
A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and ...A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and 2,2-diethyl-1,3-propanediol acetic diester (DEPDADE),were synthesized by diethyl malonate (DEM).The purities and structures of the above products were characterized by gas chromatography (GC) and gas chromatography-mass spectrometer (GC-MS),respectively.Furthermore,the possible optimal three-dimensional structures of these donors were simulated by means of Gaussian 03 and Chem 3D.Then these electron donors were coordinated with tetrachloro titanium (TiCl 4) and chloride magnesium (MgCl 2)to obtain the catalysts for the polymerization of propylene.The catalytic activities and properties of polypropylene are greatly improved by adding external donor(ED) when CPCADEE or DEPDADE is used as internal donor(ID).However,when BEMP was used as ID,the highest catalytic activity is obtained without adding ED,which can reduce production costs and simplify catalytic synthesis.The experiments indicate that BEMP has the shortest distance of oxygen atoms and the highest electronegativity.展开更多
Gamma-ray radiation has always been a convenient and effective way to modify the inter- facial properties in polymer blends. In this work, a small amount of trimethylolpropane triacrylate (TMPTA) was incorporated in...Gamma-ray radiation has always been a convenient and effective way to modify the inter- facial properties in polymer blends. In this work, a small amount of trimethylolpropane triacrylate (TMPTA) was incorporated into poly(ethylene terephthalate) (PET)/random terpolymer elastomer (ST2000) blends by melt-blending. The existence of TMPTA would induce the crosslinking of PET and ST2000 molecular chains at high temperatures of blend- ing, resulting in the improvement in the impact strength but the loss in the tensile strength. When the PET/ST2000 blends were irradiated by gamma-ray radiation, the integrated me- chanical properties could be enhanced significantly at a high absorbed dose. The irradiated sample at a dose of 100 kGy even couldn't be broken under the impact test load, and at the same time, has nearly no loss of tensile strength. Based on the analysis of the impact- fractured surface morphologies of the blends, it can be concluded that gamma-ray radiation at high absorbed dose can further in situ enhance the interfacial adhesion by promoting the crosslinking reactions of TMPTA and polymer chains. As a result, the toughness and strength of PET/ST2000 blend could be dramatically improved. This work provides a facial and practical way to the fabrication of polymer blends with high toughness and strength.展开更多
The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial proce...The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial processes such as pipe flows or for improving design, operation, optimization and troubleshooting. Nowadays, gamma CT permits to visualize failure equipment points in three-dimensional analysis and in sections of chemical and petrochemical industries. The aim of this work is the development of the mechanical system on a third-generation industrial CT scanner to analyze laboratorial process columns which perform highly efficient separation, turning the ^6oCo, ^75Se, ^137Cs and/or ^192Ir sealed gamma-ray source(s) and the NaI(Tl) multidetector array. It also has a translation movement along the column axis to obtain as many slices of the process flow as needed. The mechanical assembly for this third-generation industrial CT scanner is comprised by strength and rigidity structural frame in stainless and carbon steels, rotating table, source shield and collimator with pneumatic exposure system, spur gear system, translator, rotary stage, drives and stepper motors. The use of suitable spur gears has given a good repeatability and high accuracy in the degree of veracity. The data acquisition boards, mechanical control interfaces, software for movement control and image reconstruction were specially development. A multiphase phantom capable to be setting with solid, liquid and gas was testing. The scanner was setting for 90 views and 19 projections for each detector totalizing 11,970 projections. Experiments to determine the linear attenuation coefficients of the phantom were carried out which applied the Lambert-Beer principle. Results showed that it was possible to distinguish between the phases even the polymethylmethacrylate and the water have very similar density and linear attenuation coefficients. It was established that the newly developed third-generation fan-beam arrangement gamma scanner unit has a good spatial resolution acceptable given the size of the used phantom in this study. The tomografic reconstruction algorithm in used 60 ~ 60 pixels images was the Alternative Minimization (AM) technique and was implemented in MATLAB and VB platforms. The mechanical system presented a good performance in terms of strength, rigidity, accuracy and repeatability with great potential to be used for education or program which dedicated to training chemical and petrochemical industry professionals and for industrial process optimization in Brazil.展开更多
Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to th...Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to the intrinsic stiffness of the nanoparticles and the poor interaction between nanopartieles and organic matrices. In this work, a transparent ternary nanocomposite film with enhanced mechanical performance is fabricated by two-steps. First, the transparent ternary ZnO/MWCNTs/n-butyl methacrylate (BMA) nanodispersion is prepared by mixing the ZnO/BMA and MWCNTs/BMA dispersions directly. Then, the ternary nanocoposites film is fabricated via in-situ bulk polymerization of the above nanodispersions. As a result, the tensile strength of the ZnO/MWCNTs/poly-n-butyl methacrylate (PBMA) ternary film is enhanced by 42% and the elongation at break is three times that of ZnO/PBMA nanocomposite. The hardness of the film increases from 5B to 1H with 40 wt% ZnO. These results indicate that ZnO and MWCNTs can improve the mechanical properties of the composite significantly. Importantly, the ternary nanocomposite film still remains high transparency and exhibit excellent UV-shielding performance. The as-prepared transparent multifunctional nanocomposite films have promising applications in optical materials and devices, such as optical filters, contact lenses and protection packing.展开更多
基金Supported by the 863 High Technology Research and Development Program Plan of China (2002AA334050).
文摘The method of two-step melt blending was used to prepare polycarbonate/polypropylene/attapulgite ternary nanocomposite, and the various techniques including gel permeation chromatography, rheometer, transmis- sion electron microscope, dynamic mechanical analysis were used to examine the degradation of polycarbonate (PC) and the nanocomposite morphology. The results showed that the molecular weight degradation of PC triggered by attapulgite (AT) during the direct blending process was inhibited effectively by using two-step melt blending, in which AT was blended with polypropylene (PP) prior to compound with PC. The morphology of encapsulation was formed in the PC matrix, where PP encapsulates AT fibrillar single crystals to form a core-shell inclusion. Dynamic mechanical analysis (DMA) measurements showed that the PC/PP/AT ternary nanocomposites were more effective than conventional PC/PP blends in reinforcement, meanwhile the addition of AT in the ternary nanocomposites shifted the glass transition temperature of the PP phase to a higher value.
基金Supported by National Natural Science Foundation of China (No. 20476080)Tianjin Natural Science Foundation (No. 07JCYBJC00600)
文摘A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and 2,2-diethyl-1,3-propanediol acetic diester (DEPDADE),were synthesized by diethyl malonate (DEM).The purities and structures of the above products were characterized by gas chromatography (GC) and gas chromatography-mass spectrometer (GC-MS),respectively.Furthermore,the possible optimal three-dimensional structures of these donors were simulated by means of Gaussian 03 and Chem 3D.Then these electron donors were coordinated with tetrachloro titanium (TiCl 4) and chloride magnesium (MgCl 2)to obtain the catalysts for the polymerization of propylene.The catalytic activities and properties of polypropylene are greatly improved by adding external donor(ED) when CPCADEE or DEPDADE is used as internal donor(ID).However,when BEMP was used as ID,the highest catalytic activity is obtained without adding ED,which can reduce production costs and simplify catalytic synthesis.The experiments indicate that BEMP has the shortest distance of oxygen atoms and the highest electronegativity.
文摘Gamma-ray radiation has always been a convenient and effective way to modify the inter- facial properties in polymer blends. In this work, a small amount of trimethylolpropane triacrylate (TMPTA) was incorporated into poly(ethylene terephthalate) (PET)/random terpolymer elastomer (ST2000) blends by melt-blending. The existence of TMPTA would induce the crosslinking of PET and ST2000 molecular chains at high temperatures of blend- ing, resulting in the improvement in the impact strength but the loss in the tensile strength. When the PET/ST2000 blends were irradiated by gamma-ray radiation, the integrated me- chanical properties could be enhanced significantly at a high absorbed dose. The irradiated sample at a dose of 100 kGy even couldn't be broken under the impact test load, and at the same time, has nearly no loss of tensile strength. Based on the analysis of the impact- fractured surface morphologies of the blends, it can be concluded that gamma-ray radiation at high absorbed dose can further in situ enhance the interfacial adhesion by promoting the crosslinking reactions of TMPTA and polymer chains. As a result, the toughness and strength of PET/ST2000 blend could be dramatically improved. This work provides a facial and practical way to the fabrication of polymer blends with high toughness and strength.
文摘The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial processes such as pipe flows or for improving design, operation, optimization and troubleshooting. Nowadays, gamma CT permits to visualize failure equipment points in three-dimensional analysis and in sections of chemical and petrochemical industries. The aim of this work is the development of the mechanical system on a third-generation industrial CT scanner to analyze laboratorial process columns which perform highly efficient separation, turning the ^6oCo, ^75Se, ^137Cs and/or ^192Ir sealed gamma-ray source(s) and the NaI(Tl) multidetector array. It also has a translation movement along the column axis to obtain as many slices of the process flow as needed. The mechanical assembly for this third-generation industrial CT scanner is comprised by strength and rigidity structural frame in stainless and carbon steels, rotating table, source shield and collimator with pneumatic exposure system, spur gear system, translator, rotary stage, drives and stepper motors. The use of suitable spur gears has given a good repeatability and high accuracy in the degree of veracity. The data acquisition boards, mechanical control interfaces, software for movement control and image reconstruction were specially development. A multiphase phantom capable to be setting with solid, liquid and gas was testing. The scanner was setting for 90 views and 19 projections for each detector totalizing 11,970 projections. Experiments to determine the linear attenuation coefficients of the phantom were carried out which applied the Lambert-Beer principle. Results showed that it was possible to distinguish between the phases even the polymethylmethacrylate and the water have very similar density and linear attenuation coefficients. It was established that the newly developed third-generation fan-beam arrangement gamma scanner unit has a good spatial resolution acceptable given the size of the used phantom in this study. The tomografic reconstruction algorithm in used 60 ~ 60 pixels images was the Alternative Minimization (AM) technique and was implemented in MATLAB and VB platforms. The mechanical system presented a good performance in terms of strength, rigidity, accuracy and repeatability with great potential to be used for education or program which dedicated to training chemical and petrochemical industry professionals and for industrial process optimization in Brazil.
基金supported by the National Natural Science Foundation of China (21476024)the National Key Technology Support Program (2014BAE12B01)Beijing Municipal Science and Technology Project (Z151100003315005)
文摘Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to the intrinsic stiffness of the nanoparticles and the poor interaction between nanopartieles and organic matrices. In this work, a transparent ternary nanocomposite film with enhanced mechanical performance is fabricated by two-steps. First, the transparent ternary ZnO/MWCNTs/n-butyl methacrylate (BMA) nanodispersion is prepared by mixing the ZnO/BMA and MWCNTs/BMA dispersions directly. Then, the ternary nanocoposites film is fabricated via in-situ bulk polymerization of the above nanodispersions. As a result, the tensile strength of the ZnO/MWCNTs/poly-n-butyl methacrylate (PBMA) ternary film is enhanced by 42% and the elongation at break is three times that of ZnO/PBMA nanocomposite. The hardness of the film increases from 5B to 1H with 40 wt% ZnO. These results indicate that ZnO and MWCNTs can improve the mechanical properties of the composite significantly. Importantly, the ternary nanocomposite film still remains high transparency and exhibit excellent UV-shielding performance. The as-prepared transparent multifunctional nanocomposite films have promising applications in optical materials and devices, such as optical filters, contact lenses and protection packing.