Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the ...Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the movement patterns along the fault structures in the region since the late Pleistocene-Holocene on the basis of detailed interpretation of TM satellite images and aero-photos in geomorphologic aspect of active structures. The sub-latitudinal shortening rate along the sub-longitudinal Jinshajiang fault zone is determined to be 2~3mm/a since the late Quaternary, the horizontal dextral slip movement rate along the NNE-trending Batang fault is 1.3~2.7mm/a on average, and the horizontal sinistral slip movement rate along the NW-trending Litang fault is 2.6~4.4 mm/a on average. The general status of the recent crustal movement in the region and the regularities of block motion caused by it are analyzed in combination with data of geophysical fields, focal mechanism solutions and GPS measurements. The occurrence of the 1989 Batang M6.2~6.7 earthquake swarm is suggested to be the result of tensional rupture along the sub-latitudinal normal fault derived from the conjugate shearing along the NNE-trending Batang and the NW-trending Litang faults. It reveals a typical seismic case produced by normal faulting in a compressional tectonic environment.展开更多
文摘Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the movement patterns along the fault structures in the region since the late Pleistocene-Holocene on the basis of detailed interpretation of TM satellite images and aero-photos in geomorphologic aspect of active structures. The sub-latitudinal shortening rate along the sub-longitudinal Jinshajiang fault zone is determined to be 2~3mm/a since the late Quaternary, the horizontal dextral slip movement rate along the NNE-trending Batang fault is 1.3~2.7mm/a on average, and the horizontal sinistral slip movement rate along the NW-trending Litang fault is 2.6~4.4 mm/a on average. The general status of the recent crustal movement in the region and the regularities of block motion caused by it are analyzed in combination with data of geophysical fields, focal mechanism solutions and GPS measurements. The occurrence of the 1989 Batang M6.2~6.7 earthquake swarm is suggested to be the result of tensional rupture along the sub-latitudinal normal fault derived from the conjugate shearing along the NNE-trending Batang and the NW-trending Litang faults. It reveals a typical seismic case produced by normal faulting in a compressional tectonic environment.