期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
REISSNER-MINDLIN板的分层杂交应力有限元分析
1
作者 陈大鹏 周本宽 左德元 《西南交通大学学报》 EI CSCD 北大核心 1991年第3期7-14,共8页
本文由π_(mR)型变分泛函出发,采用沿板厚分层模型,和材料本构的力学子单元模型,对 Reissner-Mindlin C^0类板进行了弹塑性分析。建立了4节点四边形杂交应力元 HPT-9β。数值研究表明,HPT—9β不含过失性多余机动模式,当板厚宽比趋于薄... 本文由π_(mR)型变分泛函出发,采用沿板厚分层模型,和材料本构的力学子单元模型,对 Reissner-Mindlin C^0类板进行了弹塑性分析。建立了4节点四边形杂交应力元 HPT-9β。数值研究表明,HPT—9β不含过失性多余机动模式,当板厚宽比趋于薄板极限时,亦不发生“自锁”,其计算精度和计算效率皆优于同类的 LH4元(Spilker,1980)。计算工作显示,本文的方法具有随加载过程来描述沿板厚的塑性进展的能力。 展开更多
关键词 板弯曲理论 杂交应力 有限元法
下载PDF
基于Mindlin理论的新型模式转换超声振动系统设计与研究
2
作者 张宁宁 朱佳 袁金霖 《电加工与模具》 2021年第5期63-68,共6页
基于波的纵振动理论和Mindlin厚板弯曲振动理论,设计研究了由三段复合变幅杆、中厚圆盘、大尺寸圆筒组成的新型模式转换超声振动系统。对所设计的振动系统进行数值计算和有限元模态和谐响应分析,同时研究各几何参量对振动系统谐振频率... 基于波的纵振动理论和Mindlin厚板弯曲振动理论,设计研究了由三段复合变幅杆、中厚圆盘、大尺寸圆筒组成的新型模式转换超声振动系统。对所设计的振动系统进行数值计算和有限元模态和谐响应分析,同时研究各几何参量对振动系统谐振频率的影响规律,并通过实验进行测试。结果表明:设计结果和有限元分析及测试结果之间的误差较小;系统谐振频率随着圆盘厚度的增加而增大,随着变幅杆大小端半径的增加而增加;随着变幅杆各段长度、圆管段高、内径的增大而减小。研究结果验证了所建立的新型超声振动系统谐振频率方程的正确性,所设计系统的结构合理、振动效果良好,为谐振频率的修正提供了依据,也为超声辅助加工技术特别是硬脆材料曲面的高精度加工提供了一种新型超声振动系统。 展开更多
关键词 Mindlin厚弯曲振动理论 频率方程 谐振频率
下载PDF
Flexural behavior of in-plane bending glass structures for design method
3
作者 吴丽丽 王元清 +2 位作者 严茂超 石永久 张恒秋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3133-3140,共8页
Experimental study was carried out on the in-plane bending behavior of glass plates without lateral supports, and the effects of the factors, such as height-to-span ratio, on the stability of glass panels were studied... Experimental study was carried out on the in-plane bending behavior of glass plates without lateral supports, and the effects of the factors, such as height-to-span ratio, on the stability of glass panels were studied. Results show that the in-plane bending glass plates with both ends simply supported and their upper edge free lose overall stability under loads, which belongs to the limit-point type of instability. It is found that the buckling load increases linearly with the increase of height-to-span ratio of the glass plates. The lateral stress of in-plane bending glass plates without lateral supports increases linearly under loads; while the large-area stress increases nonlinearly and the lateral stress is not the controlling factor of instability. In finite element analysis, the first buckling mode is regarded as the initial imperfection and imposed on the model as 1/1000 of the span of the components. The numerical buckling load according to the theory of large deflection is less than the experiment result, which is more conservative and can provide some reference for design. For the design method, when the in-plane load is imposed on the glass plate, its lateral strength and the deflection should be verified. Considering the stability of the in-plane bending glass plate without reliable lateral support, buckling is another possible failure mode and calls for verification. 展开更多
关键词 load-bearing glass structure flexural performance in-plane bending BUCKLING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部