板形缺陷识别对于矫直机在矫直过程中具有重要意义,针对传统板形缺陷识别精度低、操作繁琐等问题,以AlexNet模型为基础,提出一种基于卷积神经网络的板形缺陷识别模型(OP-AlexNet)。在预处理阶段利用双立方插值算法对数据集中的图片进行...板形缺陷识别对于矫直机在矫直过程中具有重要意义,针对传统板形缺陷识别精度低、操作繁琐等问题,以AlexNet模型为基础,提出一种基于卷积神经网络的板形缺陷识别模型(OP-AlexNet)。在预处理阶段利用双立方插值算法对数据集中的图片进行尺寸的统一并进行标准化操作。对AlexNet模型结构进行优化,包括调整卷积核大小并减少两层卷积层,删除一层全连接层降低网络复杂度;对卷积层提取的特征批量归一化(batch normalization,BN)以加快网络的收敛速度,激活函数选择LeakyReLU(Leaky Rectified Linear Unit)替换原结构的ReLU(Rectified Linear Unit)激活函数以减少静默神经元的出现。实验结果表明该模型最终识别精度达到91.3%,相比AlexNet模型提高了16.2%,并具有更好的鲁棒性,能够满足板形缺陷识别的要求。展开更多
文摘板形缺陷识别对于矫直机在矫直过程中具有重要意义,针对传统板形缺陷识别精度低、操作繁琐等问题,以AlexNet模型为基础,提出一种基于卷积神经网络的板形缺陷识别模型(OP-AlexNet)。在预处理阶段利用双立方插值算法对数据集中的图片进行尺寸的统一并进行标准化操作。对AlexNet模型结构进行优化,包括调整卷积核大小并减少两层卷积层,删除一层全连接层降低网络复杂度;对卷积层提取的特征批量归一化(batch normalization,BN)以加快网络的收敛速度,激活函数选择LeakyReLU(Leaky Rectified Linear Unit)替换原结构的ReLU(Rectified Linear Unit)激活函数以减少静默神经元的出现。实验结果表明该模型最终识别精度达到91.3%,相比AlexNet模型提高了16.2%,并具有更好的鲁棒性,能够满足板形缺陷识别的要求。