期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Faster R-CNN的实木板材缺陷检测识别系统
被引量:
19
1
作者
范佳楠
刘英
+3 位作者
胡忠康
赵乾
沈鹭翔
周晓林
《林业工程学报》
CSCD
北大核心
2019年第3期112-117,共6页
我国木材资源有限,为了提高木材的利用率,采用机器视觉来实现木材缺陷快速而稳定的检测,不仅可以克服人工检测的低效率和木材缺陷识别的低准确率,而且对提高木材加工企业的智能化水平具有重要意义。为了高效、快速、准确地进行无损检测...
我国木材资源有限,为了提高木材的利用率,采用机器视觉来实现木材缺陷快速而稳定的检测,不仅可以克服人工检测的低效率和木材缺陷识别的低准确率,而且对提高木材加工企业的智能化水平具有重要意义。为了高效、快速、准确地进行无损检测,采用深度学习方法,建立了一种基于快速深度神经网络的实木板材缺陷识别模型。首先采用Resnet V2结构对采集到的实木板材缺陷图像进行特征提取,然后应用该模型对节子、孔洞等实木板材缺陷进行训练学习,最后构建了Faster R-CNN检测框架,并使用tensorflow开发平台对节子、孔洞等实木板材缺陷进行预测输出。具体选取了2 000块杉木样本,通过旋转对原始的实木板材图像进行数据扩充,扩充后图像的80%作为训练集,20%作为验证集来进行仿真。仿真结果表明,该模型对实木板材节子缺陷检测正确率为98%,对实木板材孔洞缺陷检测正确率为95%,验证了将深度学习算法应用于实木板材缺陷检测中的有效性。
展开更多
关键词
实木
板材
板材缺陷识别
深度学习
FASTER
R-CNN
无损检测
下载PDF
职称材料
题名
基于Faster R-CNN的实木板材缺陷检测识别系统
被引量:
19
1
作者
范佳楠
刘英
胡忠康
赵乾
沈鹭翔
周晓林
机构
南京林业大学机械电子工程学院
出处
《林业工程学报》
CSCD
北大核心
2019年第3期112-117,共6页
基金
国家林业局"948"项目(2014-4-48)
江苏省政策引导类计划(国际科技合作)项目(BZ2016028)
文摘
我国木材资源有限,为了提高木材的利用率,采用机器视觉来实现木材缺陷快速而稳定的检测,不仅可以克服人工检测的低效率和木材缺陷识别的低准确率,而且对提高木材加工企业的智能化水平具有重要意义。为了高效、快速、准确地进行无损检测,采用深度学习方法,建立了一种基于快速深度神经网络的实木板材缺陷识别模型。首先采用Resnet V2结构对采集到的实木板材缺陷图像进行特征提取,然后应用该模型对节子、孔洞等实木板材缺陷进行训练学习,最后构建了Faster R-CNN检测框架,并使用tensorflow开发平台对节子、孔洞等实木板材缺陷进行预测输出。具体选取了2 000块杉木样本,通过旋转对原始的实木板材图像进行数据扩充,扩充后图像的80%作为训练集,20%作为验证集来进行仿真。仿真结果表明,该模型对实木板材节子缺陷检测正确率为98%,对实木板材孔洞缺陷检测正确率为95%,验证了将深度学习算法应用于实木板材缺陷检测中的有效性。
关键词
实木
板材
板材缺陷识别
深度学习
FASTER
R-CNN
无损检测
Keywords
solid wood panel
panel defect detection and recognition
deep learning
Faster R-CNN
non destructive testing
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Faster R-CNN的实木板材缺陷检测识别系统
范佳楠
刘英
胡忠康
赵乾
沈鹭翔
周晓林
《林业工程学报》
CSCD
北大核心
2019
19
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部