Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, no...Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, not only the volume compression ratio curve but also the extended Drucker-Prager linear model were obtained. In addition, through the friction strength tests, parameters of the Mohr-Coulomb model were gained, which proved in basic agreement with those of the extended Drucker-Prager linear model. Additionally, curves of the friction coefficients between the NMG and the sheet metal trader different pressures were also obtained. Based on the material performance experiments, numerical analysis in respect of flexible-die forming process with solid granule medium (SGM) was conducted. The die and device for experiments of solid granule medium forming (SGMF) on sheet metal were designed and manufactured. Typical parabolic parts were successfully trial-produced. The tests and simulation results show that the sheet formability is significantly improved for the extraordinary friction performance during interaction between the SGM and the sheet metal surface. The process control and die structure are simple, and the shaped work-pieces enjoy many advantages, such as satisfactory surface quality and favorable die fitability, which offers a brand-new method and means for processing and preparation of sheet metals.展开更多
文摘为使3300 V及以上电压等级绝缘栅双极型晶体管(IGBT)的工作结温达到150℃以上,设计了一种具有高结终端效率、结构简单且工艺可实现的线性变窄场限环(LNFLR)终端结构。采用TCAD软件对这种终端结构的击穿电压、电场分布和击穿电流等进行了仿真,调整环宽、环间距及线性变窄的公差值等结构参数以获得最优的电场分布,重点对比了高环掺杂浓度和低环掺杂浓度两种情况下LNFLR终端的阻断特性。仿真结果表明,低环掺杂浓度的LNFLR终端具有更高的击穿电压。进一步通过折中击穿电压和终端宽度,采用LNFLR终端的3300 V IGBT器件可以实现4500 V以上的终端耐压,而终端宽度只有700μm,相对于标准的场限环场板(FLRFP)终端缩小了50%。
基金Project(50775197)supported by the National Natural Science Foundation of China
文摘Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, not only the volume compression ratio curve but also the extended Drucker-Prager linear model were obtained. In addition, through the friction strength tests, parameters of the Mohr-Coulomb model were gained, which proved in basic agreement with those of the extended Drucker-Prager linear model. Additionally, curves of the friction coefficients between the NMG and the sheet metal trader different pressures were also obtained. Based on the material performance experiments, numerical analysis in respect of flexible-die forming process with solid granule medium (SGM) was conducted. The die and device for experiments of solid granule medium forming (SGMF) on sheet metal were designed and manufactured. Typical parabolic parts were successfully trial-produced. The tests and simulation results show that the sheet formability is significantly improved for the extraordinary friction performance during interaction between the SGM and the sheet metal surface. The process control and die structure are simple, and the shaped work-pieces enjoy many advantages, such as satisfactory surface quality and favorable die fitability, which offers a brand-new method and means for processing and preparation of sheet metals.