This paper introduces a study on modelling surface finish in EDM (Electrical Discharge Machining) of tablet shape punches when using copper as electrode material. In this study, 27 experiments were performed based o...This paper introduces a study on modelling surface finish in EDM (Electrical Discharge Machining) of tablet shape punches when using copper as electrode material. In this study, 27 experiments were performed based on BBD (Box-Behnken Design) and the work-piece material was 9CrSi steel. The input process parameters were the current, the pulse on time, the pulse off time and the voltage. The effects of the input parameters on the surface finish were evaluated by analysing variance. Besides, from the results of the experiments, a regression equation for determining the surface roughness is introduced. Also, the optimum input parameter values were found in order to get the minimum surface roughness.展开更多
In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a...In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical im- plementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer con- figuration, with Reynolds number Rex=l.3x 106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nic0ud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Ldv^que et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.展开更多
文摘This paper introduces a study on modelling surface finish in EDM (Electrical Discharge Machining) of tablet shape punches when using copper as electrode material. In this study, 27 experiments were performed based on BBD (Box-Behnken Design) and the work-piece material was 9CrSi steel. The input process parameters were the current, the pulse on time, the pulse off time and the voltage. The effects of the input parameters on the surface finish were evaluated by analysing variance. Besides, from the results of the experiments, a regression equation for determining the surface roughness is introduced. Also, the optimum input parameter values were found in order to get the minimum surface roughness.
文摘In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical im- plementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer con- figuration, with Reynolds number Rex=l.3x 106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nic0ud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Ldv^que et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.