The sequences {Zi,n, 1≤i≤n}, n≥1 are multi-nomial distribution among i.i.d, random variables {X1,i, i≥1}, {X2,i, i≥1 } {Xm,i, i≥1 }. The extreme value distribution Gz(x) of this particular triangular array of ...The sequences {Zi,n, 1≤i≤n}, n≥1 are multi-nomial distribution among i.i.d, random variables {X1,i, i≥1}, {X2,i, i≥1 } {Xm,i, i≥1 }. The extreme value distribution Gz(x) of this particular triangular array of i.i,d, random variables Z1,n, Z2 n,...,Zn,n is discussed. A new type of not max-stable extreme value distributions which are Fréchet mixture, Gumbel mixture and Weibull mixture has been found if Fj,…… Fm belong to the same MDA. Whether mixtures of different types of extreme value distributions exist or not and the more general case are discussed in this paper. We found that Gz(x) does not exist as mixture forms of the different types of extreme value distributions after we investigated all cases.展开更多
This paper mainly study extreme values of FGM random sequences.We prove a technique theorem by the dependence structure of FGM sequences,and further obtain the limiting distributions of maxima and k-th largest for sta...This paper mainly study extreme values of FGM random sequences.We prove a technique theorem by the dependence structure of FGM sequences,and further obtain the limiting distributions of maxima and k-th largest for stationary FGM random sequences.展开更多
In this paper, firstly, we propose several convexification and concavification transformations to convert a strictly monotone function into a convex or concave function, then we propose several convexification and con...In this paper, firstly, we propose several convexification and concavification transformations to convert a strictly monotone function into a convex or concave function, then we propose several convexification and concavification transformations to convert a non-convex and non-concave objective function into a convex or concave function in the programming problems with convex or concave constraint functions, and propose several convexification and concavification transformations to convert a non-monotone objective function into a convex or concave function in some programming problems with strictly monotone constraint functions. Finally, we prove that the original programming problem can be converted into an equivalent concave minimization problem, or reverse convex programming problem or canonical D.C. programming problem. Then the global optimal solution of the original problem can be obtained by solving the converted concave minimization problem, or reverse convex programming problem or canonical D.C. programming problem using the existing algorithms about them.展开更多
This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of...This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of the Kahler angle and the maximum of |H|2 on the limit flow is studied.The authors also show the nonexistence of type II blow-up flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated Lagrangian mean curvature flow which is flat.展开更多
The authors investigate the global behavior of the solutions of the difference equation xn+1=axn-1xn-k/bxn-p+cxn-q,n=0,1,…where the initial conditions x-r, x-r+1, x-r+2,… , x0 are arbitrary positive real numbers...The authors investigate the global behavior of the solutions of the difference equation xn+1=axn-1xn-k/bxn-p+cxn-q,n=0,1,…where the initial conditions x-r, x-r+1, x-r+2,… , x0 are arbitrary positive real numbers, r = max{l, k,p, q) is a nonnegative integer and a, b, c are positive constants. Some special cases of this equation are also studied in this paper.展开更多
In a recent article, the authors provided an effective algorithm for both computing the global infimum of f and deciding whether or not the infimum of f is attained, where f is a multivariate polynomial over the field...In a recent article, the authors provided an effective algorithm for both computing the global infimum of f and deciding whether or not the infimum of f is attained, where f is a multivariate polynomial over the field R of real numbers. As a complement, the authors investigate the semi- algebraically connected components of minimum points of a polynomial function in this paper. For a given multivariate polynomial f over R, it is shown that the above-mentioned algorithm can find at least one point in each semi-algebraically connected component of minimum points of f whenever f has its global minimum.展开更多
In this paper,the authors consider a stochastic control problem where the system is governed by a general backward stochastic differential equation.The control domain need not be convex,and the diffusion coefficient c...In this paper,the authors consider a stochastic control problem where the system is governed by a general backward stochastic differential equation.The control domain need not be convex,and the diffusion coefficient can contain a control variable.The authors obtain a stochastic maximum principle for the optimal control of this problem by virtue of the second-order duality method.展开更多
Considering the uncertainty of kelp-abalone-sea cucumber population, an interval model of carbon sink fisheries with multi-trophic levels is proposed. The equilibria of the model are identified and the corresponding s...Considering the uncertainty of kelp-abalone-sea cucumber population, an interval model of carbon sink fisheries with multi-trophic levels is proposed. The equilibria of the model are identified and the corresponding stabilities are discussed. And the existence of bionomic equilibrium of the model is investigated. Next the optimal controller is designed to obtain the optimal harvest using Pontryagin's maximum principle. Numerical simulations are carried to prove the results.展开更多
基金Project partially supported by the National Natural Science Foundation of Switzerland
文摘The sequences {Zi,n, 1≤i≤n}, n≥1 are multi-nomial distribution among i.i.d, random variables {X1,i, i≥1}, {X2,i, i≥1 } {Xm,i, i≥1 }. The extreme value distribution Gz(x) of this particular triangular array of i.i,d, random variables Z1,n, Z2 n,...,Zn,n is discussed. A new type of not max-stable extreme value distributions which are Fréchet mixture, Gumbel mixture and Weibull mixture has been found if Fj,…… Fm belong to the same MDA. Whether mixtures of different types of extreme value distributions exist or not and the more general case are discussed in this paper. We found that Gz(x) does not exist as mixture forms of the different types of extreme value distributions after we investigated all cases.
文摘This paper mainly study extreme values of FGM random sequences.We prove a technique theorem by the dependence structure of FGM sequences,and further obtain the limiting distributions of maxima and k-th largest for stationary FGM random sequences.
基金This research is supported by the National Natural Science Foundation of China(Grant 10271073).
文摘In this paper, firstly, we propose several convexification and concavification transformations to convert a strictly monotone function into a convex or concave function, then we propose several convexification and concavification transformations to convert a non-convex and non-concave objective function into a convex or concave function in the programming problems with convex or concave constraint functions, and propose several convexification and concavification transformations to convert a non-monotone objective function into a convex or concave function in some programming problems with strictly monotone constraint functions. Finally, we prove that the original programming problem can be converted into an equivalent concave minimization problem, or reverse convex programming problem or canonical D.C. programming problem. Then the global optimal solution of the original problem can be obtained by solving the converted concave minimization problem, or reverse convex programming problem or canonical D.C. programming problem using the existing algorithms about them.
基金Project supported by the National Natural Science Foundation of China (Nos. 10901088, 11001268)
文摘This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of the Kahler angle and the maximum of |H|2 on the limit flow is studied.The authors also show the nonexistence of type II blow-up flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated Lagrangian mean curvature flow which is flat.
文摘The authors investigate the global behavior of the solutions of the difference equation xn+1=axn-1xn-k/bxn-p+cxn-q,n=0,1,…where the initial conditions x-r, x-r+1, x-r+2,… , x0 are arbitrary positive real numbers, r = max{l, k,p, q) is a nonnegative integer and a, b, c are positive constants. Some special cases of this equation are also studied in this paper.
基金supported by the National Natural Science Foundation of China under Grant No.11161034the Science Foundation of the Education Department of Jiangxi Province under Grant No.Gjj12012
文摘In a recent article, the authors provided an effective algorithm for both computing the global infimum of f and deciding whether or not the infimum of f is attained, where f is a multivariate polynomial over the field R of real numbers. As a complement, the authors investigate the semi- algebraically connected components of minimum points of a polynomial function in this paper. For a given multivariate polynomial f over R, it is shown that the above-mentioned algorithm can find at least one point in each semi-algebraically connected component of minimum points of f whenever f has its global minimum.
文摘In this paper,the authors consider a stochastic control problem where the system is governed by a general backward stochastic differential equation.The control domain need not be convex,and the diffusion coefficient can contain a control variable.The authors obtain a stochastic maximum principle for the optimal control of this problem by virtue of the second-order duality method.
文摘Considering the uncertainty of kelp-abalone-sea cucumber population, an interval model of carbon sink fisheries with multi-trophic levels is proposed. The equilibria of the model are identified and the corresponding stabilities are discussed. And the existence of bionomic equilibrium of the model is investigated. Next the optimal controller is designed to obtain the optimal harvest using Pontryagin's maximum principle. Numerical simulations are carried to prove the results.