期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
极端低光情况下的图像增强方法
被引量:
4
1
作者
杨勇
刘惠义
《图学学报》
CSCD
北大核心
2020年第4期520-528,共9页
针对极端低光情况下的图像增强问题,提出一种基于编码解码网络和残差网络的端到端的全卷积网络模型。设计一个包括编码解码网络和精细网络2部分的端到端的全卷积网络模型作为转换网络,直接处理短曝光图像的光传感器数据得到RGB格式的输...
针对极端低光情况下的图像增强问题,提出一种基于编码解码网络和残差网络的端到端的全卷积网络模型。设计一个包括编码解码网络和精细网络2部分的端到端的全卷积网络模型作为转换网络,直接处理短曝光图像的光传感器数据得到RGB格式的输出图像。该网络包含对抗思想、残差结构和感知损失,先通过对极低光图像编码解码重构图像的低频信息,之后将重构的低频信息输入残差网络中进而重构出图像的高频信息。在SID数据集上进行实验验证,结果表明,该方法有效地提高了极端低光情况下拍摄得到的图像进行低光增强之后的视觉效果,增加了细节表达,使得图像中物体的纹理更加清楚和边缘更加分明。
展开更多
关键词
深度学习
卷积神经网络
极低光图像
生成对抗网络
图像
增强
下载PDF
职称材料
题名
极端低光情况下的图像增强方法
被引量:
4
1
作者
杨勇
刘惠义
机构
河海大学计算机与信息学院
出处
《图学学报》
CSCD
北大核心
2020年第4期520-528,共9页
文摘
针对极端低光情况下的图像增强问题,提出一种基于编码解码网络和残差网络的端到端的全卷积网络模型。设计一个包括编码解码网络和精细网络2部分的端到端的全卷积网络模型作为转换网络,直接处理短曝光图像的光传感器数据得到RGB格式的输出图像。该网络包含对抗思想、残差结构和感知损失,先通过对极低光图像编码解码重构图像的低频信息,之后将重构的低频信息输入残差网络中进而重构出图像的高频信息。在SID数据集上进行实验验证,结果表明,该方法有效地提高了极端低光情况下拍摄得到的图像进行低光增强之后的视觉效果,增加了细节表达,使得图像中物体的纹理更加清楚和边缘更加分明。
关键词
深度学习
卷积神经网络
极低光图像
生成对抗网络
图像
增强
Keywords
deep learning
convolutional neural network
extremely low-light image
generative adversarial
image enhancement
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
极端低光情况下的图像增强方法
杨勇
刘惠义
《图学学报》
CSCD
北大核心
2020
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部