In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the...In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.展开更多
The unified bound on the fundamental limit of quantum dynamics rate, as quietly recently obtainedby Levitin and Toffoli [Phys.Rev.Lett.103 (2009) 160502], is improved and refined.The improvement may bearbitrarily larg...The unified bound on the fundamental limit of quantum dynamics rate, as quietly recently obtainedby Levitin and Toffoli [Phys.Rev.Lett.103 (2009) 160502], is improved and refined.The improvement may bearbitrarily large in certain cases.In particular, this puts a limit on the operation rate of quantum gates allowed byquantum mechanics.展开更多
基金Project(2006AA04Z405) supported by the National High Technology Research and Development Program of ChinaProject(3102019) supported by Beijing Municipal Natural Science Foundation,China
文摘In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.
基金Supported by the National Natural Science Foundation of China under Grant No.10771208the Science Fund for Creative Research Groups under Grant No.10721101the Key Lab of Random Complex Structures and Data Science,CAS,under Grant No.2008DP173182
文摘The unified bound on the fundamental limit of quantum dynamics rate, as quietly recently obtainedby Levitin and Toffoli [Phys.Rev.Lett.103 (2009) 160502], is improved and refined.The improvement may bearbitrarily large in certain cases.In particular, this puts a limit on the operation rate of quantum gates allowed byquantum mechanics.