本文证明:如果f(z)是拓广复平面到自身使得f(0)=0,f(1)=1和f(∞)=∞的一个Q拟共形映照。则对任何r,|z|≤r |f(z)|≤r,成立|f(z)-z|≤4/π rK(1/1+r)K(r/1+r)·logQ,其中K(t)=integral from n=0 to 1(dx/((1-x^2)(1-tx^2))^(1/2)。...本文证明:如果f(z)是拓广复平面到自身使得f(0)=0,f(1)=1和f(∞)=∞的一个Q拟共形映照。则对任何r,|z|≤r |f(z)|≤r,成立|f(z)-z|≤4/π rK(1/1+r)K(r/1+r)·logQ,其中K(t)=integral from n=0 to 1(dx/((1-x^2)(1-tx^2))^(1/2)。它是夏道行的一个定理的拓广。展开更多
文摘本文证明:如果f(z)是拓广复平面到自身使得f(0)=0,f(1)=1和f(∞)=∞的一个Q拟共形映照。则对任何r,|z|≤r |f(z)|≤r,成立|f(z)-z|≤4/π rK(1/1+r)K(r/1+r)·logQ,其中K(t)=integral from n=0 to 1(dx/((1-x^2)(1-tx^2))^(1/2)。它是夏道行的一个定理的拓广。