太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI...太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI系统的能量输入,(2)MI系统对能量输入的响应,(3)环电流的能量消耗,(4)极区电离层焦耳加热的能量消耗,(5)极光粒子沉降的能量消耗,(6)磁尾能量的消耗、储存以及返回下游太阳风,(7)平静期间的能量积累与释放,(8)能量在不同能汇中的分配,(9)评价能量函数的准则和方法.展开更多
A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can ...A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can improve light‐absorption capacities and facilitate efficient hole transfer to the surface,were deposited on the surface of the BiVO4 photoanode by a hydrothermal method.All the samples were characterized using X‐ray diffraction,scanning electron microscopy,and diffuse‐reflectance spectroscopy.Linear sweep voltammetry and current‐time plots were used to investigate the PEC activity.The photocurrent response of NiFe‐LDH/BiVO4 at 1.23 V vs the reversible hydrogen electrode was higher than those of Ni(OH)2/BiVO4,Fe(OH)2/BiVO4 and pure BiVO4 electrodes under visible‐light illumination.NiFe‐LDH/BiVO4 also gave a superior PEC hydrogen evolution performance.Furthermore,the stability of the NiFe‐LDH/BiVO4 photoanode was excellent compared with that of the bare BiVO4 photoanode,and offers a novel method for solar‐assisted water splitting.展开更多
Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The d...Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.展开更多
Based on the auroral electron/ion precipitation boundary database observed by the DMSP satellites during 1984–2009, the characteristics of the nightside equatorial boundaries of the electron precipitation(B1E) and ...Based on the auroral electron/ion precipitation boundary database observed by the DMSP satellites during 1984–2009, the characteristics of the nightside equatorial boundaries of the electron precipitation(B1E) and the ion precipitation(B1I) in the Northern/Southern Hemispheres(NH/SH) are statistically investigated. The results show: That most of the boundaries are located between magnetic latitude(MLAT) of 60°–70° with the mean MLAT for B1E/B1 I to be 64.30°N/63.22°N and 64.48°S/63.26°S in the NH and SH, respectively, indicating that B1 E and B1 I in both hemispheres are located in conjugated magnetic field lines with B1 E ~1.2° poleward of B1I; that the MLAT of B1 E and B1 I in both hemispheres shift to lower MLAT(from ~70° to ~55°) as geomagnetic activity increases; that MLAT of both B1 E and B1 I and their differences slowly decrease from dusk to midnight with some difference in both hemispheres during different levels of geomagnetic activities; that B1 E and B1 I in both hemisphere decrease linearly with Kp and exponentially with Dst, AE, and SYM-H, respectively, demonstrating that auroral particle precipitation is closely related with geomagnetic activity; that in different magnetic local time(MLT) sectors, the changing rates of the boundaries with Kp are different, and the rates of B1 E are generally larger than that of B1 I, implying that the difference between B1 E and B1 I reduce with increasing geomagnetic activity. Compared with previous studies, the statistical results based on the long-term large database in this paper can well reflect the properties of the equatorial boundaries of auroral precipitation and may be used for physical modeling or space weather forecasting in future.展开更多
ZnO-TiO2 hybrid photoanodes were fabricated via the doctor-blade method by integrating vertically-grown sparse ZnO arrays with hydrothermal TiO2 nanoparticles. A special surface-coating technique was developed to depo...ZnO-TiO2 hybrid photoanodes were fabricated via the doctor-blade method by integrating vertically-grown sparse ZnO arrays with hydrothermal TiO2 nanoparticles. A special surface-coating technique was developed to deposit a thin TiO2 layer on the surface of ZnO rods. Microstructure, optical and photoelectrochemical performance of the hybrid photoanodes were investigated. The denser ZnO array exhibited bad filling behavior of nanoparticles in the interspace of ZnO rods, strong scattering and low conversion efficiency (0.27%). The sparser array showed a much better integrated microstructure, improved transmittance and high conversion efficiency (2.68%). The surface modification of ZnO rods by the TiO2 thin layer was found useful in improving the interfacial microstructure between the ZnO rod and the TiO2 bulk film, and the total conversion efficiency of 3.01% was achieved, higher than that of the pure TiO2 nanoparticle cell (2.93%). The increased scattering effects on the incident light, the enhanced electron transportation at TiO2/dye/electrolyte interface, and the inhabited recombination were responsible for this improvement.展开更多
In this work, the intensification of luminol electrochemiluminescence (ECL) by metallic oxide nanoparticles (MONPs), as ZnO, MnO2,In2O3 and TiO2 , under alkaline condition is reported and the related mechanism is stud...In this work, the intensification of luminol electrochemiluminescence (ECL) by metallic oxide nanoparticles (MONPs), as ZnO, MnO2,In2O3 and TiO2 , under alkaline condition is reported and the related mechanism is studied. It is found that all four types of those MONPs exhibit the effect toward the ECL intensification of luminol. Furthermore, the silica sol-gel film is taken to immobilize the MONPs onto the platinum electrodes. The so-obtained modified electrodes also show the enhanced ECL and better signal/noise ratio, as well improved signal stability. Finally, the ECL reagent, luminol, is immobilized together with the MONPs onto the electrode surface to perform as the ECL sensor. On resulting sensors, good linear responses are obtained toward hydrogen peroxide. The mechanism of intensification of luminol ECL by MONPs is discussed in this paper. It is proposed that the ECL intensification can be attributed to the production of reactive oxygen species, as well as the adsorption of luminol on surface of MONPs.展开更多
An indium tin oxide(ITO)electrode coated with monolayer TiO2/[Ru(phen)2(dC18bpy)] 2+ (phen=1,10-phenanthroline, dC18bpy=4,4′-dioctadecyl-2,2′-bipyridyl)hybrid film(denoted as ITO/TiO2-Ru)has been prepared using the ...An indium tin oxide(ITO)electrode coated with monolayer TiO2/[Ru(phen)2(dC18bpy)] 2+ (phen=1,10-phenanthroline, dC18bpy=4,4′-dioctadecyl-2,2′-bipyridyl)hybrid film(denoted as ITO/TiO2-Ru)has been prepared using the modified Langmuir-Blodgett(LB)method,and the electrocatalytic oxidation of mononucleotide of guanosine 5′-monophosphate(GMP)on an ITO/TiO2-Ru electrode after Pd-photodeposition(denoted as ITO/TiO2-Ru/Pd)has been studied.Atomic force microscopy reveals that the single-layered hybrid film of TiO2 nanosheets/[Ru(phen)2(dC18bpy)] 2+is closely packed at a surface pressure of 25 mN m 1and has a thickness of(3.20±0.5)nm.X-ray photoelectron spectra show the formation of Pd nanoparticles on the surface of hybrid film with radii of 20–200 nm by the reduction of[Pd(NH3)4] 2+ under light irradiation.When it is applied to oxidize GMP,a larger catalytic oxidative current is achieved on the ITO/TiO2-Ru/Pd electrode at the external potential above 700 mV(vs.Ag|AgCl|KCl)in comparison with the naked ITO electrode and ITO/TiO2-Ru electrode.Such a result indicates that the Pd nanoparticles are able to hamper the combination of electron hole pairs and reduce the counterwork of insulating long alkyl chains of amphiphilic Ru(II)complexes,and thus develops the electron transfer efficiency and produces the enhanced redox current.展开更多
文摘太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI系统的能量输入,(2)MI系统对能量输入的响应,(3)环电流的能量消耗,(4)极区电离层焦耳加热的能量消耗,(5)极光粒子沉降的能量消耗,(6)磁尾能量的消耗、储存以及返回下游太阳风,(7)平静期间的能量积累与释放,(8)能量在不同能汇中的分配,(9)评价能量函数的准则和方法.
基金supported by the National Natural Science Foundation of China(21663027,51262028,21261021)the Science and Technology Support Project of Gansu Province(1504GKCA027)+2 种基金the Program for the Young Innovative Talents of Longyuanthe Program for Innovative Research Team(NWNULKQN-15-2)the Undergraduate Academic Innovative Research Team of Northwest Normal University~~
文摘A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can improve light‐absorption capacities and facilitate efficient hole transfer to the surface,were deposited on the surface of the BiVO4 photoanode by a hydrothermal method.All the samples were characterized using X‐ray diffraction,scanning electron microscopy,and diffuse‐reflectance spectroscopy.Linear sweep voltammetry and current‐time plots were used to investigate the PEC activity.The photocurrent response of NiFe‐LDH/BiVO4 at 1.23 V vs the reversible hydrogen electrode was higher than those of Ni(OH)2/BiVO4,Fe(OH)2/BiVO4 and pure BiVO4 electrodes under visible‐light illumination.NiFe‐LDH/BiVO4 also gave a superior PEC hydrogen evolution performance.Furthermore,the stability of the NiFe‐LDH/BiVO4 photoanode was excellent compared with that of the bare BiVO4 photoanode,and offers a novel method for solar‐assisted water splitting.
文摘Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB957800,2011CB811400)the National Hi-Tech Research and Development Program of China(Grant No.2010AA121000)the National Natural Science Foundation of China(Grant Nos.41274147,41204102)
文摘Based on the auroral electron/ion precipitation boundary database observed by the DMSP satellites during 1984–2009, the characteristics of the nightside equatorial boundaries of the electron precipitation(B1E) and the ion precipitation(B1I) in the Northern/Southern Hemispheres(NH/SH) are statistically investigated. The results show: That most of the boundaries are located between magnetic latitude(MLAT) of 60°–70° with the mean MLAT for B1E/B1 I to be 64.30°N/63.22°N and 64.48°S/63.26°S in the NH and SH, respectively, indicating that B1 E and B1 I in both hemispheres are located in conjugated magnetic field lines with B1 E ~1.2° poleward of B1I; that the MLAT of B1 E and B1 I in both hemispheres shift to lower MLAT(from ~70° to ~55°) as geomagnetic activity increases; that MLAT of both B1 E and B1 I and their differences slowly decrease from dusk to midnight with some difference in both hemispheres during different levels of geomagnetic activities; that B1 E and B1 I in both hemisphere decrease linearly with Kp and exponentially with Dst, AE, and SYM-H, respectively, demonstrating that auroral particle precipitation is closely related with geomagnetic activity; that in different magnetic local time(MLT) sectors, the changing rates of the boundaries with Kp are different, and the rates of B1 E are generally larger than that of B1 I, implying that the difference between B1 E and B1 I reduce with increasing geomagnetic activity. Compared with previous studies, the statistical results based on the long-term large database in this paper can well reflect the properties of the equatorial boundaries of auroral precipitation and may be used for physical modeling or space weather forecasting in future.
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB623304 and 2011CB013805the National Natural Science Foundation of China (Grant Nos. 51072214 and 51002174)
文摘ZnO-TiO2 hybrid photoanodes were fabricated via the doctor-blade method by integrating vertically-grown sparse ZnO arrays with hydrothermal TiO2 nanoparticles. A special surface-coating technique was developed to deposit a thin TiO2 layer on the surface of ZnO rods. Microstructure, optical and photoelectrochemical performance of the hybrid photoanodes were investigated. The denser ZnO array exhibited bad filling behavior of nanoparticles in the interspace of ZnO rods, strong scattering and low conversion efficiency (0.27%). The sparser array showed a much better integrated microstructure, improved transmittance and high conversion efficiency (2.68%). The surface modification of ZnO rods by the TiO2 thin layer was found useful in improving the interfacial microstructure between the ZnO rod and the TiO2 bulk film, and the total conversion efficiency of 3.01% was achieved, higher than that of the pure TiO2 nanoparticle cell (2.93%). The increased scattering effects on the incident light, the enhanced electron transportation at TiO2/dye/electrolyte interface, and the inhabited recombination were responsible for this improvement.
基金supported by the National Natural Science Foundation of China (20275025 & 20675055)the Natural Science Foundation of Jiangsu Province (BK2009111)Technology Plan of Suzhou (SYJG0901)
文摘In this work, the intensification of luminol electrochemiluminescence (ECL) by metallic oxide nanoparticles (MONPs), as ZnO, MnO2,In2O3 and TiO2 , under alkaline condition is reported and the related mechanism is studied. It is found that all four types of those MONPs exhibit the effect toward the ECL intensification of luminol. Furthermore, the silica sol-gel film is taken to immobilize the MONPs onto the platinum electrodes. The so-obtained modified electrodes also show the enhanced ECL and better signal/noise ratio, as well improved signal stability. Finally, the ECL reagent, luminol, is immobilized together with the MONPs onto the electrode surface to perform as the ECL sensor. On resulting sensors, good linear responses are obtained toward hydrogen peroxide. The mechanism of intensification of luminol ECL by MONPs is discussed in this paper. It is proposed that the ECL intensification can be attributed to the production of reactive oxygen species, as well as the adsorption of luminol on surface of MONPs.
基金supported by the National Natural Science Foundation of China(21073133,20843007,20471043)Zhejiang Provincial Natural Science Foundation of China(Y5100283,Y4090248,Y4080177)Wenzhou University Foundation(2007L019)
文摘An indium tin oxide(ITO)electrode coated with monolayer TiO2/[Ru(phen)2(dC18bpy)] 2+ (phen=1,10-phenanthroline, dC18bpy=4,4′-dioctadecyl-2,2′-bipyridyl)hybrid film(denoted as ITO/TiO2-Ru)has been prepared using the modified Langmuir-Blodgett(LB)method,and the electrocatalytic oxidation of mononucleotide of guanosine 5′-monophosphate(GMP)on an ITO/TiO2-Ru electrode after Pd-photodeposition(denoted as ITO/TiO2-Ru/Pd)has been studied.Atomic force microscopy reveals that the single-layered hybrid film of TiO2 nanosheets/[Ru(phen)2(dC18bpy)] 2+is closely packed at a surface pressure of 25 mN m 1and has a thickness of(3.20±0.5)nm.X-ray photoelectron spectra show the formation of Pd nanoparticles on the surface of hybrid film with radii of 20–200 nm by the reduction of[Pd(NH3)4] 2+ under light irradiation.When it is applied to oxidize GMP,a larger catalytic oxidative current is achieved on the ITO/TiO2-Ru/Pd electrode at the external potential above 700 mV(vs.Ag|AgCl|KCl)in comparison with the naked ITO electrode and ITO/TiO2-Ru electrode.Such a result indicates that the Pd nanoparticles are able to hamper the combination of electron hole pairs and reduce the counterwork of insulating long alkyl chains of amphiphilic Ru(II)complexes,and thus develops the electron transfer efficiency and produces the enhanced redox current.