Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liqu...Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liquids or aqueous-ionic liquid biphasic systems. Up to date, there have been many reports on enzyme-exhibited features and enzyme-mediated reactions in ionic liquids. In many cases, remarkable results with respect to yield, catalytic activity, stability and (enantio-, regio-) selectivity were obtained in ionic liquids in comparison with those observed in conventional media. Accordingly, ionic liquids provide new possibilities for the application of new type of solvent in biocatalytic reactions.展开更多
Longitudinal polar modes generate a macroscopic electric field in piezoelectric crystals and cause an additional mechanism of Raman scattering. The classical theory holds that transverse polar modes cannot produce suc...Longitudinal polar modes generate a macroscopic electric field in piezoelectric crystals and cause an additional mechanism of Raman scattering. The classical theory holds that transverse polar modes cannot produce such an additional mechanism. Our quantum theory shows that there is an additional Raman scattering mechanism arising from the electro-optic effect of transverse polar modes.展开更多
In this paper, we systematically study the positive gate leakage current in AlGaN/GaN metal-oxide-semiconductor high electron-mobility transistors (MOS-HEMTs) with HfO 2 dielectric using atomic layer deposition (ALD)....In this paper, we systematically study the positive gate leakage current in AlGaN/GaN metal-oxide-semiconductor high electron-mobility transistors (MOS-HEMTs) with HfO 2 dielectric using atomic layer deposition (ALD). We observe that the incorporated nitrogen ions will improve the positive gate leakage current of devices obviously, but do not change the reverse gate leakage current. The passivation mechanism of nitrogen ions in oxygen vacancies in HfO 2 is studied by first-principles calculations. It is shown that the gap states of HfO 2 caused by oxygen vacancies increase the positive gate leakage current of MOS-HEMTs. Nitrogen ions passivate the gap states of HfO 2 and decrease the positive gate leakage current but do not effect the reverse gate leakage current.展开更多
基金the Natural Science Foundation of Guangdong Province (No. 020839).
文摘Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liquids or aqueous-ionic liquid biphasic systems. Up to date, there have been many reports on enzyme-exhibited features and enzyme-mediated reactions in ionic liquids. In many cases, remarkable results with respect to yield, catalytic activity, stability and (enantio-, regio-) selectivity were obtained in ionic liquids in comparison with those observed in conventional media. Accordingly, ionic liquids provide new possibilities for the application of new type of solvent in biocatalytic reactions.
文摘Longitudinal polar modes generate a macroscopic electric field in piezoelectric crystals and cause an additional mechanism of Raman scattering. The classical theory holds that transverse polar modes cannot produce such an additional mechanism. Our quantum theory shows that there is an additional Raman scattering mechanism arising from the electro-optic effect of transverse polar modes.
基金supported by the National Natural Science Foundation of China (Grant Nos.60736033,60890191)the Fundamental Research Funds for the Central Universities (Grant Nos.JY10000925002,JY10000-904009)
文摘In this paper, we systematically study the positive gate leakage current in AlGaN/GaN metal-oxide-semiconductor high electron-mobility transistors (MOS-HEMTs) with HfO 2 dielectric using atomic layer deposition (ALD). We observe that the incorporated nitrogen ions will improve the positive gate leakage current of devices obviously, but do not change the reverse gate leakage current. The passivation mechanism of nitrogen ions in oxygen vacancies in HfO 2 is studied by first-principles calculations. It is shown that the gap states of HfO 2 caused by oxygen vacancies increase the positive gate leakage current of MOS-HEMTs. Nitrogen ions passivate the gap states of HfO 2 and decrease the positive gate leakage current but do not effect the reverse gate leakage current.