We report the gate-modulated Raman spectrum of defective graphene. We show that the intensity of the D peak can be reversibly tuned by applying a gate voltage. This effect is attributed to chemical functionalization o...We report the gate-modulated Raman spectrum of defective graphene. We show that the intensity of the D peak can be reversibly tuned by applying a gate voltage. This effect is attributed to chemical functionalization of the graphene crystal lattice, generated by an electrochemical reaction involving the water layer trapped at the interface between silicon and graphene.展开更多
文摘We report the gate-modulated Raman spectrum of defective graphene. We show that the intensity of the D peak can be reversibly tuned by applying a gate voltage. This effect is attributed to chemical functionalization of the graphene crystal lattice, generated by an electrochemical reaction involving the water layer trapped at the interface between silicon and graphene.