While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LED...While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.展开更多
Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent ma...Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.展开更多
Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of con...Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of controversy.This study delves into the formation of polarons in different crystalline forms of TiO_(2)and their connection with the materials'structure.By employing density functional theory calculations with on-site Coulomb interaction correction(DFT+U),we provide a detailed analysis of the electronic polarization behavior in the anatase and rutile forms of TiO_(2).We focus on the polarization properties of defect-induced and photoexcited excess electrons on various TiO_(2)surfaces.The results reveal that the defect electrons can form small polarons on the anatase TiO_(2)(101)surface,while on the rutile TiO_(2)(110)surface,both small and large polarons(hybrid-state polarons)are formed.Photoexcited electrons are capable of forming both small and large polarons on the surfaces of both crystal types.The analysis indicates that the differences in polaron distribution are primarily determined by the intrinsic properties of the crystals;the structural and symmetry differences between anatase and rutile TiO_(2)lead to the distinct polaron behaviors.Further investigation suggests that the polarization behavior of defect electrons is also related to the arrangement of electron orbitals around the Ti atoms,while the polarization of photoexcited electrons is mainly facilitated by the lattice distortions.These findings elucidate the formation mechanisms of different types of polarons and may contribute to understanding the performance of TiO_(2)in different fields.展开更多
During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the i...During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the induced polarization (IP) effect, which affects the depth and precision of the TEM detection. The conventional inversion method is inefficient because it is difficult to process the data. In this paper, the Cole-Cole model is adopted to analyze the effect of Dc resistivity, chargeability, time constant, and frequency exponent on the TEM response in an homogeneous half space model. Singular Value Decomposition (SVD) is used to invert the measured TEM data, and the Dc resistivity, chargeability, time constant and frequency exponent were extracted from the measured TEM data in the mine area. The extracted parameters are used for interpreting the detection result as a supplement. This reveals why the TEM data acquired in the area has a low resolution. It was found that the DC resistivity and time constant do not significantly change the results, however, the chargeability and frequency exponent have a significant effect. Because of these influences, the SVD method is more accurate than the conventional method in the apparent resistivity profile. The area of the copper mine is confined accurately based on the SVD inverted data. The conclusion has been verified by drill and is identical to the practical geological situation.展开更多
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr...A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.展开更多
文摘While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.
文摘Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.
文摘Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of controversy.This study delves into the formation of polarons in different crystalline forms of TiO_(2)and their connection with the materials'structure.By employing density functional theory calculations with on-site Coulomb interaction correction(DFT+U),we provide a detailed analysis of the electronic polarization behavior in the anatase and rutile forms of TiO_(2).We focus on the polarization properties of defect-induced and photoexcited excess electrons on various TiO_(2)surfaces.The results reveal that the defect electrons can form small polarons on the anatase TiO_(2)(101)surface,while on the rutile TiO_(2)(110)surface,both small and large polarons(hybrid-state polarons)are formed.Photoexcited electrons are capable of forming both small and large polarons on the surfaces of both crystal types.The analysis indicates that the differences in polaron distribution are primarily determined by the intrinsic properties of the crystals;the structural and symmetry differences between anatase and rutile TiO_(2)lead to the distinct polaron behaviors.Further investigation suggests that the polarization behavior of defect electrons is also related to the arrangement of electron orbitals around the Ti atoms,while the polarization of photoexcited electrons is mainly facilitated by the lattice distortions.These findings elucidate the formation mechanisms of different types of polarons and may contribute to understanding the performance of TiO_(2)in different fields.
基金supported by the National Technology R&D Program in the 11th Five year Plan of China(No.2007BAQ00168-1-1)the National Natural Science Foundation of China(No. 41103052/D0309)the Shanxi Province Excellent Graduate Innovation Program(No. 20113038)
文摘During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the induced polarization (IP) effect, which affects the depth and precision of the TEM detection. The conventional inversion method is inefficient because it is difficult to process the data. In this paper, the Cole-Cole model is adopted to analyze the effect of Dc resistivity, chargeability, time constant, and frequency exponent on the TEM response in an homogeneous half space model. Singular Value Decomposition (SVD) is used to invert the measured TEM data, and the Dc resistivity, chargeability, time constant and frequency exponent were extracted from the measured TEM data in the mine area. The extracted parameters are used for interpreting the detection result as a supplement. This reveals why the TEM data acquired in the area has a low resolution. It was found that the DC resistivity and time constant do not significantly change the results, however, the chargeability and frequency exponent have a significant effect. Because of these influences, the SVD method is more accurate than the conventional method in the apparent resistivity profile. The area of the copper mine is confined accurately based on the SVD inverted data. The conclusion has been verified by drill and is identical to the practical geological situation.
基金Projects(50436010,50930005)supported by the National Natural Science Foundation of ChinaProject(U0834002)supported by the Joint Fund of NSFC-Guangdong of China
文摘A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.