We investigate solutions to superlinear or sublinear operator equations and obtain some abstract existence results by minimax methods. These results apply to superlinear or sublinear Hamiltonian systems satisfying sev...We investigate solutions to superlinear or sublinear operator equations and obtain some abstract existence results by minimax methods. These results apply to superlinear or sublinear Hamiltonian systems satisfying several boundary value conditions including Sturm-Liouville boundary value conditions and generalized periodic boundary value conditions, and yield some new theorems concerning existence of solutions or nontrivial solutions. In particular, some famous results about periodic solutions to superlinear or sublinear Hamiltonian systems by Rabinowitz or Benci and Rabinowitz are special cases of the theorems.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11171157)the Jiangsu Planned Projects for Postdoctoral Research Funds
文摘We investigate solutions to superlinear or sublinear operator equations and obtain some abstract existence results by minimax methods. These results apply to superlinear or sublinear Hamiltonian systems satisfying several boundary value conditions including Sturm-Liouville boundary value conditions and generalized periodic boundary value conditions, and yield some new theorems concerning existence of solutions or nontrivial solutions. In particular, some famous results about periodic solutions to superlinear or sublinear Hamiltonian systems by Rabinowitz or Benci and Rabinowitz are special cases of the theorems.