期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
两类三元极小码与其完全重量计数器
1
作者 刘海波 廖群英 朱灿泽 《数学进展》 CSCD 北大核心 2024年第2期390-406,共17页
最近,极小码因其在秘钥共享和二方计算中的应用被广泛研究.构造反Ashikhmin-Barg界的极小码,然后确定其完全重量计数器是编码与密码中有趣的研究.本文基于指数和与Krawtchouk多项式,利用定义在F_(3)^(m)中的向量集函数给出了两类反Ashik... 最近,极小码因其在秘钥共享和二方计算中的应用被广泛研究.构造反Ashikhmin-Barg界的极小码,然后确定其完全重量计数器是编码与密码中有趣的研究.本文基于指数和与Krawtchouk多项式,利用定义在F_(3)^(m)中的向量集函数给出了两类反Ashikhmin-Barg三元极小码,并确定了其完全重量计数器. 展开更多
关键词 线性码 极小 极小向量 重量分布 完全重量计数器
原文传递
SVD-LSSVM and its application in chemical pattern classification 被引量:2
2
作者 TAO Shao-hui CHEN De-zhao HU Wang-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1942-1947,共6页
Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selectin... Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selecting hyper parameters for LSSVM is proposed. SVD-LSSVM is trained through singular value decomposition (SVD) of kernel matrix. Cross validation time of selecting hyper parameters can be saved because a new hyper parameter, singular value contribution rate (SVCR), replaces the penalty factor of LSSVM. Several UCI benchmarking data and the Olive classification problem were used to test SVD-LSSVM. The result showed that SVD-LSSVM has good performance in classification and saves time for cross validation. 展开更多
关键词 Pattern classification Structural risk minimization Least squares support vector machine (LSSVM) Hyper pa-rameter selection Cross validation Singular value decomposition (SVD)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部