Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil s...Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil sums,several classes of two-weight or three-weight linear codes are presented by choosing a proper defining set,and their weight enumerators and complete weight enumerators are determined.Furthermore,these codes are proven to be minimal.By puncturing these linear codes,two classes of two-weight projective codes are obtained,and the parameters of the corresponding strongly regular graph are given.This paper generalizes the results of[7].展开更多
This paper considers the multiple-outlier Weibull model, and derives some sui-ficlent conal- tions for the comparison of lifetimes of series systems with respect to dispersive order. In these models, order statistic i...This paper considers the multiple-outlier Weibull model, and derives some sui-ficlent conal- tions for the comparison of lifetimes of series systems with respect to dispersive order. In these models, order statistic is closed under minima, so convex transform, star and Lorenz orders are not investigated because they are scale variant. The results established here strengthen some of the results presented by Fang and Tang (2014).展开更多
In this paper, we propose and analyze adaptive projected gradient thresholding(APGT) methods for finding sparse solutions of the underdetermined linear systems with equality and box constraints. The general convergenc...In this paper, we propose and analyze adaptive projected gradient thresholding(APGT) methods for finding sparse solutions of the underdetermined linear systems with equality and box constraints. The general convergence will be demonstrated, and in addition, the bound of the number of iterations is established in some special cases. Under suitable assumptions, it is proved that any accumulation point of the sequence generated by the APGT methods is a local minimizer of the underdetermined linear system. Moreover, the APGT methods, under certain conditions, can find all s-sparse solutions for accurate measurement cases and guarantee the stability and robustness for flawed measurement cases. Numerical examples are presented to show the accordance with theoretical results in compressed sensing and verify high out-of-sample performance in index tracking.展开更多
基金supported by the Natural Science Foundation of China (No.11901062)the Sichuan Natural Science Foundation (No.2024NSFSC0417)。
文摘Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil sums,several classes of two-weight or three-weight linear codes are presented by choosing a proper defining set,and their weight enumerators and complete weight enumerators are determined.Furthermore,these codes are proven to be minimal.By puncturing these linear codes,two classes of two-weight projective codes are obtained,and the parameters of the corresponding strongly regular graph are given.This paper generalizes the results of[7].
基金supported by the Provincial Natural Science Research Project of Anhui Colleges under Grant No.KJ2016A263the National Natural Science Foundation of Anhui Province under Grant Nos.1408085MA07,1608085J07the Ph D Research Startup Foundation of Anhui Normal University under Grant No.2014bsqdjj34
文摘This paper considers the multiple-outlier Weibull model, and derives some sui-ficlent conal- tions for the comparison of lifetimes of series systems with respect to dispersive order. In these models, order statistic is closed under minima, so convex transform, star and Lorenz orders are not investigated because they are scale variant. The results established here strengthen some of the results presented by Fang and Tang (2014).
基金supported by National Natural Science Foundation of China(Grant Nos.11101325,11271297,71371152 and 71171158)partially supported by the Foundations of the Key Discipline of the State Ethnic Affairs Commission
文摘In this paper, we propose and analyze adaptive projected gradient thresholding(APGT) methods for finding sparse solutions of the underdetermined linear systems with equality and box constraints. The general convergence will be demonstrated, and in addition, the bound of the number of iterations is established in some special cases. Under suitable assumptions, it is proved that any accumulation point of the sequence generated by the APGT methods is a local minimizer of the underdetermined linear system. Moreover, the APGT methods, under certain conditions, can find all s-sparse solutions for accurate measurement cases and guarantee the stability and robustness for flawed measurement cases. Numerical examples are presented to show the accordance with theoretical results in compressed sensing and verify high out-of-sample performance in index tracking.