Let G be a Carnot group and D={e 1,e 2 } be a bracket generating left invariant distribution on G.In this paper,we obtain two main results.We first prove that there only exist normal minimizers in G if the type of D i...Let G be a Carnot group and D={e 1,e 2 } be a bracket generating left invariant distribution on G.In this paper,we obtain two main results.We first prove that there only exist normal minimizers in G if the type of D is (2,1,...,1) or (2,1,...,1,2).This immediately leads to the fact that there are only normal minimizers in the Goursat manifolds.As one corollary,we also obtain that there are only normal minimizers when dim G 5.We construct a class of Carnot groups such as that of type (2,1,...,1,2,n 0,...,n a) with n 0 1,n i 0,i=1,...,a,in which there exist strictly abnormal extremals.This implies that,for any given manifold of dimension n 6,we can find a class of n-dimensional Carnot groups having strictly abnormal minimizers.We conclude that the dimension n=5 is the border line for the existence and nonexistence of strictly abnormal extremals.Our main technique is based on the equations for the normal and abnormal extremals.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10771102)
文摘Let G be a Carnot group and D={e 1,e 2 } be a bracket generating left invariant distribution on G.In this paper,we obtain two main results.We first prove that there only exist normal minimizers in G if the type of D is (2,1,...,1) or (2,1,...,1,2).This immediately leads to the fact that there are only normal minimizers in the Goursat manifolds.As one corollary,we also obtain that there are only normal minimizers when dim G 5.We construct a class of Carnot groups such as that of type (2,1,...,1,2,n 0,...,n a) with n 0 1,n i 0,i=1,...,a,in which there exist strictly abnormal extremals.This implies that,for any given manifold of dimension n 6,we can find a class of n-dimensional Carnot groups having strictly abnormal minimizers.We conclude that the dimension n=5 is the border line for the existence and nonexistence of strictly abnormal extremals.Our main technique is based on the equations for the normal and abnormal extremals.