<正>虚根是Kac-Moody代数中的一个非常重要的概念,它体现了Kac-Moody代数与有限维单Lie代数的本质上的区别.在本文中,我们首先描述Kac-Moody代数的严格虚根.然后再刻划极小虚根,这是文献[1]中结果的进一步完善.1 基本概念设A=(a_(...<正>虚根是Kac-Moody代数中的一个非常重要的概念,它体现了Kac-Moody代数与有限维单Lie代数的本质上的区别.在本文中,我们首先描述Kac-Moody代数的严格虚根.然后再刻划极小虚根,这是文献[1]中结果的进一步完善.1 基本概念设A=(a_(ij))~n_(i,j)=1是一个广义Cartan矩阵,((?),Π,Π°)是A的一个实现,其中П={α_1,…,α_n}(?)*;Π~v={α°_1,…α°_n}(?),g(A)是关联于A的Kac-Moody代数.Q=sum from n=l toZα_i和 Q_+=sum from n=l toZ_iα_i分别是g(A)的根格和正根格.W和Sw分别是gw的Weyl群和D”忱n图.我们用的和坡分别表示g(A)的所有正实根的集合和正虚根的集合.展开更多
文摘<正>虚根是Kac-Moody代数中的一个非常重要的概念,它体现了Kac-Moody代数与有限维单Lie代数的本质上的区别.在本文中,我们首先描述Kac-Moody代数的严格虚根.然后再刻划极小虚根,这是文献[1]中结果的进一步完善.1 基本概念设A=(a_(ij))~n_(i,j)=1是一个广义Cartan矩阵,((?),Π,Π°)是A的一个实现,其中П={α_1,…,α_n}(?)*;Π~v={α°_1,…α°_n}(?),g(A)是关联于A的Kac-Moody代数.Q=sum from n=l toZα_i和 Q_+=sum from n=l toZ_iα_i分别是g(A)的根格和正根格.W和Sw分别是gw的Weyl群和D”忱n图.我们用的和坡分别表示g(A)的所有正实根的集合和正虚根的集合.