勒索病毒、僵尸网络等恶意软件在互联网日益泛滥,已成为威胁网络安全运行的重要因素。域名作为恶意软件与命令和控制(Command and Control,C&C)服务器的主要通信方式,是检测和防范的重要途径。但域名生成算法(Domain Generation Alg...勒索病毒、僵尸网络等恶意软件在互联网日益泛滥,已成为威胁网络安全运行的重要因素。域名作为恶意软件与命令和控制(Command and Control,C&C)服务器的主要通信方式,是检测和防范的重要途径。但域名生成算法(Domain Generation Algorithm,DGA)的不断改进发展,给传统的基于威胁情报的检测方式带来了巨大挑战,而机器学习技术逐渐成为应对DGA域名的主要途径。梯度提升树算法作为机器学习中重要的分类算法,能够适应DGA域名检测场景。基于XGBoost框架,采用开放域名数据作为样本集,研究了基于梯度提升树算法的DGA域名检测方法,并通过域名向量转换、检测模型训练、参数调优,实现了一个高效的DGA域名检测模型。展开更多
文摘勒索病毒、僵尸网络等恶意软件在互联网日益泛滥,已成为威胁网络安全运行的重要因素。域名作为恶意软件与命令和控制(Command and Control,C&C)服务器的主要通信方式,是检测和防范的重要途径。但域名生成算法(Domain Generation Algorithm,DGA)的不断改进发展,给传统的基于威胁情报的检测方式带来了巨大挑战,而机器学习技术逐渐成为应对DGA域名的主要途径。梯度提升树算法作为机器学习中重要的分类算法,能够适应DGA域名检测场景。基于XGBoost框架,采用开放域名数据作为样本集,研究了基于梯度提升树算法的DGA域名检测方法,并通过域名向量转换、检测模型训练、参数调优,实现了一个高效的DGA域名检测模型。