Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, an...Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, and the effects of porosity on the microstructure and mechanical properties of the joint were analyzed. The microstructure examination shows that the pores mainly appear close to the top or bottom part of the weld, and could connect to each other and lead to the formation of cracks in the welds. However, the pores can be controlled with proper welding parameters. The tensile testing results reveal that the average joint strength is close to or higher than that of the base metal. The microhardness in the weld can be even higher than that in the base metal due to the second ohase strengthening of β-Mg17(A1, Zn)12 formed in the weld.展开更多
In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by...In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.展开更多
In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) ...In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses, the mechanism of the anodic processes playing on the surface of A1/Pb-0.8%Ag and A1/Pb-0.75%Ag-0.03%Co anodes prepared by electro-deposition from methyl sulfonic acid bath for zinc electrowinning from model sulphate electrolytes have been measured. On the basis of the cyclic voltammograms obtained, information about the corrosion rate of the composite in PbO2 region has been concluded. The microstructures were also observed by means of SEM and XRD which showed Pb-0.75%Ag-0.03%Co alloy composite coating has uniform and chaotic orientation tetragonal symmetry crystallites of PbSO4, but Pb-0.8%Ag alloy composite coating has well-organized orientation crystallites of PbSO4 concentrated in the certain zones after 24 h of anodic polarization. It is important that Al/Pb-0.75%Ag-0.03%Co anode oxide film consists of non-conductive dense MnO2 and PbSO4 and a, fl-PbO2 penetrated into which, in fact, are the active centers of the oxygen evolution after 24 h of anodic polarization.展开更多
One dimensional periodic hopping model is useful to understand the motion of microscopic particles in thermal noise environment. In this research, by formal calculation and based on detailed balance, the explicit expr...One dimensional periodic hopping model is useful to understand the motion of microscopic particles in thermal noise environment. In this research, by formal calculation and based on detailed balance, the explicit expressions of the limits of mean velocity and diffusion constant of this model as the number of internal mechanochemical sates tend to infinity are obtained.These results will be helpful to understand the limit of the one dimensional hopping model.At the same time, the work can be used to get more useful results in continuous form from the corresponding ones obtained by discrete models.展开更多
TiAlN multilayer coatings composed of TiAl and TiAlN layers were deposited on ZL109 alloys using filtered cathodic vacuum arc(FCVA)technology.The effect of bias voltage on the microstructure and properties of the coat...TiAlN multilayer coatings composed of TiAl and TiAlN layers were deposited on ZL109 alloys using filtered cathodic vacuum arc(FCVA)technology.The effect of bias voltage on the microstructure and properties of the coating was systematically studied.The results show that the coating exhibits a multi-phase structure dominated by TiAlN phase.As the bias voltage increases,the orientation of TiAlN changes from(200)plane to(111)plane due to the increase of atomic mobility and lattice distortion.The hardness,elastic modulus and adhesion of the coating show the same trend of change,that is,first increase and then decrease.When the bias voltage is 75 V,the coating exhibits the highest hardness(~30.3 GPa),elastic modulus(~229.1 GPa),adhesion(HF 2)and the lowest wear rate(~4.44×10^(−5)mm^(3)/(N·m)).Compared with bare ZL109 alloy,the mechanical and tribological properties of TiAlN coated alloy surface can effectively be improved.展开更多
In this study,Al-65V alloy has been produced by electrode heating for 3−15 min.The impurities content,microstructure and the vanadium content of the alloy in the slag are investigated.The results indicate that differe...In this study,Al-65V alloy has been produced by electrode heating for 3−15 min.The impurities content,microstructure and the vanadium content of the alloy in the slag are investigated.The results indicate that different heating time shows obviously impacts not only on the impurities and microstructure of AlV alloy,but also on the vanadium recovery rate of slag.The impurities contents of C,O and N are 0.085%,0.022%and 0.036%,respectively,which meet the commercial standard when the electric heating time is controlled to 10 min,and the content of vanadium in slag is 0.18%.展开更多
Ni-Ce0.8Sm.2O.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electr...Ni-Ce0.8Sm.2O.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.8Sm.2O.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect ofmicrostructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3-2Ni(OH)2-4H2O or Ni(NO3)2-6H2O decomposition technique.展开更多
A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstr...A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstructure and the performance of the composite anode were studied by scanning electron microscopy(SEM),mechanical properties tests at room temperature and electrochemical methods.The results show that the thickness of the diffusion layer increases with the increase of sintering temperature up to 1 100 °C;whereas,the surface Mn content increases and reaches the maximum at 1 000 °C and then decreases thereafter.Lower surface Mn content is beneficial for the enhanced corrosion resistance and lowered open cell voltage in electrolytic process.The new anode prepared under the optimized conditions has been applied in industry and exhibits superior economic benefits to conventional Ti anodic materials.展开更多
Aim To explore interaction mode between amphoteric molecules with the orderedphospholipid membrane. Methods Membrane interactions were determined by immobilized artificialmembrane (IAM) chromatography and solutes'...Aim To explore interaction mode between amphoteric molecules with the orderedphospholipid membrane. Methods Membrane interactions were determined by immobilized artificialmembrane (IAM) chromatography and solutes' hydrophobicity was measured by n-octanol/buffer system.Results The ampholytes, similar to bases, generally exhibited higher membrane affinity than expectedfrom their hydrophobicity, resulting from the attractive polar interaction with phospholipidmembrane. Furthermore, the strength of additional polar interaction with membrane (Δlg k_(IAM)) wasthen calculated. The Δlg k_(IAM) values were far greater for bases and ampholytes ranging from0.50 - 1.39, than those for acids and neutrals with the scope from - 0.55 - 0.44. ConclusionConsidering the microspecies distribution of amphoteric molecules, it was assumed that not onlyneutral and positive but also zwitterionic microspecies are capable of partitioning into orderedamphoteric lipid membrane with complementarily conformational and energetically favorableinteractions.展开更多
Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The ...Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made.展开更多
Due to the presence of graphite flake cascades, the real graphite anode of Li-ion battery shows non-iso- tropic characteristic. The present work developed an ellipsoid-based simulated annealing method and numeri- call...Due to the presence of graphite flake cascades, the real graphite anode of Li-ion battery shows non-iso- tropic characteristic. The present work developed an ellipsoid-based simulated annealing method and numeri- cally reconstructed the three-dimensional microstructure of a graphite anode. The reconstructed anode is a composite of three clearly distinguished phases: pore (or electrolyte), graphite, and solid additives, well representing the non- isotropic heterogeneous characteristic of real graphite anode. Characterization analysis of the reconstructed electrode gives information such as the connectivity of individual phase, the specific interracial area between solid and pore phase, and the pore size distribution. The effects of the ellipsoid size on the structural characteristics of graphite anode were particularly studied. As the size of the ellipsoidal particle slightly increases, the average pore diameter increases and as a result the specific interfacial area between the solid and pore phase in the reconstructed area decreases; compared with the equatorial radius, the polar radius of ellipsoidal graphite particles has more sig- nificant influence on the characteristics of electrode microstructure.展开更多
A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom ste...A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom steps and photon anti-bunching are observed by a photon-counting-based HBT system using fluorescence light. The average atom dwelling time in the FORT is about 9 s. To reduce the background noise in the detection procedure we employ a weak probe laser tuned to the D1 line to il- lurninate the single atom from the direction perpendicular to the large-numerical-aperture collimation system. The second or- der degree of coherence g(2)(r)=0.12_+0.02 is obtained directly from the fluorescence light of the single atom without deducting the background. The background light has been suppressed to 10 counts per 50 ms, which is much lower compared with the reported results. The measured g(2)(r) is in good agreement with theoretical analysis. The system provides a simple and effi- cient method to manipulate and measure single neutral atoms, and opens a way to create an efficient controlled single-photon source.展开更多
Low-carbon advanced nanostructured steels have been developed for various structural engineering applications, including bridges, automobiles, and other strength-critical applications such as the reactor pressure vess...Low-carbon advanced nanostructured steels have been developed for various structural engineering applications, including bridges, automobiles, and other strength-critical applications such as the reactor pressure vessels in nuclear power stations. The mechanical performances and applications of these steels are strongly dependent on their microstructural features. By controlling the size,number density, distribution, and types of precipitates, it is possible to produce nanostructured steels with a tensile strength reaching as high as 2 GPa while keeping a decent tensile elongation above 10% and a reduction of area as high as 40%. Besides, through a careful control of strength contributions from multiple strengthening mechanisms, the nanostructured steels with superior strengths and low-temperature impact toughness can be obtained by avoiding the temper embrittlement regime. With appropriate Mn additions, these nanostructured steels can achieve a triple enhancement in ductility(total tensile elongation, TE of ~30%) at no expense of strengths(yield strength, YS of ~1100 to 1300 MPa, ultimate tensile strength, UTS of ~1300 to 1400 MPa). More importantly, these steels demonstrate good fabricability and weldability. In this paper, the microstructure-property relationships of these advanced nanostructured steels are comprehensively reviewed. In addition, the current limitations and future development of these nanostructured steels are carefully discussed and outlined.展开更多
基金Project (09009) supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, and the effects of porosity on the microstructure and mechanical properties of the joint were analyzed. The microstructure examination shows that the pores mainly appear close to the top or bottom part of the weld, and could connect to each other and lead to the formation of cracks in the welds. However, the pores can be controlled with proper welding parameters. The tensile testing results reveal that the average joint strength is close to or higher than that of the base metal. The microhardness in the weld can be even higher than that in the base metal due to the second ohase strengthening of β-Mg17(A1, Zn)12 formed in the weld.
基金Project (51004056) supported by the National Natural Science Foundation of ChinaProject (KKZ6201152009) supported by the Opening Foundation of Key Laboratory of Inorganic Coating Materials, ChinaProjects (2011239, 2011240) supported by Analysis and Measurement Research Fund of Kunming University of Science and Technology,China
文摘In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.
基金Project(51004056)supported by the National Natural Science Foundation of China
文摘In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses, the mechanism of the anodic processes playing on the surface of A1/Pb-0.8%Ag and A1/Pb-0.75%Ag-0.03%Co anodes prepared by electro-deposition from methyl sulfonic acid bath for zinc electrowinning from model sulphate electrolytes have been measured. On the basis of the cyclic voltammograms obtained, information about the corrosion rate of the composite in PbO2 region has been concluded. The microstructures were also observed by means of SEM and XRD which showed Pb-0.75%Ag-0.03%Co alloy composite coating has uniform and chaotic orientation tetragonal symmetry crystallites of PbSO4, but Pb-0.8%Ag alloy composite coating has well-organized orientation crystallites of PbSO4 concentrated in the certain zones after 24 h of anodic polarization. It is important that Al/Pb-0.75%Ag-0.03%Co anode oxide film consists of non-conductive dense MnO2 and PbSO4 and a, fl-PbO2 penetrated into which, in fact, are the active centers of the oxygen evolution after 24 h of anodic polarization.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10701029) and the Shanghai Key Laboratory for Contemporary Applied Mathematics (No.SGST09DZ2272900).
文摘One dimensional periodic hopping model is useful to understand the motion of microscopic particles in thermal noise environment. In this research, by formal calculation and based on detailed balance, the explicit expressions of the limits of mean velocity and diffusion constant of this model as the number of internal mechanochemical sates tend to infinity are obtained.These results will be helpful to understand the limit of the one dimensional hopping model.At the same time, the work can be used to get more useful results in continuous form from the corresponding ones obtained by discrete models.
基金Hunan Provincial Natural Science Foundation,China(No.2021JJ30646)Educational Commission of Hunan Province,China(No.20B579)+1 种基金the National Natural Science Foundation of China(Nos.51701172,12027813)Innovation Team of Hunan Province,China(No.2018RS3091).
文摘TiAlN multilayer coatings composed of TiAl and TiAlN layers were deposited on ZL109 alloys using filtered cathodic vacuum arc(FCVA)technology.The effect of bias voltage on the microstructure and properties of the coating was systematically studied.The results show that the coating exhibits a multi-phase structure dominated by TiAlN phase.As the bias voltage increases,the orientation of TiAlN changes from(200)plane to(111)plane due to the increase of atomic mobility and lattice distortion.The hardness,elastic modulus and adhesion of the coating show the same trend of change,that is,first increase and then decrease.When the bias voltage is 75 V,the coating exhibits the highest hardness(~30.3 GPa),elastic modulus(~229.1 GPa),adhesion(HF 2)and the lowest wear rate(~4.44×10^(−5)mm^(3)/(N·m)).Compared with bare ZL109 alloy,the mechanical and tribological properties of TiAlN coated alloy surface can effectively be improved.
基金Project(51734006)supported by the National Natural Science Foundation of ChinaProject(2014HA003)supported by the Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province of China+1 种基金Project(2017HB009)supported by the Science and Technological Talent Cultivation Plan of Yunnan Province,ChinaProject(2017HA006)supported by the Program for the Academician Free Exploration Fund of Yunnan Province,China
文摘In this study,Al-65V alloy has been produced by electrode heating for 3−15 min.The impurities content,microstructure and the vanadium content of the alloy in the slag are investigated.The results indicate that different heating time shows obviously impacts not only on the impurities and microstructure of AlV alloy,but also on the vanadium recovery rate of slag.The impurities contents of C,O and N are 0.085%,0.022%and 0.036%,respectively,which meet the commercial standard when the electric heating time is controlled to 10 min,and the content of vanadium in slag is 0.18%.
文摘Ni-Ce0.8Sm.2O.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.8Sm.2O.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect ofmicrostructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3-2Ni(OH)2-4H2O or Ni(NO3)2-6H2O decomposition technique.
基金Projects(20476106,50721003 and 20636020) supported by the National Natural Science Foundation of ChinaProject(50825102) supported by the National Natural Science Funds for Distinguished Young Scholar of China+1 种基金Project(2006AA03Z511) supported by the National High Technology Research and Development Program of ChinaProject supported by the 111 Program of Chinese Ministry of Education
文摘A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstructure and the performance of the composite anode were studied by scanning electron microscopy(SEM),mechanical properties tests at room temperature and electrochemical methods.The results show that the thickness of the diffusion layer increases with the increase of sintering temperature up to 1 100 °C;whereas,the surface Mn content increases and reaches the maximum at 1 000 °C and then decreases thereafter.Lower surface Mn content is beneficial for the enhanced corrosion resistance and lowered open cell voltage in electrolytic process.The new anode prepared under the optimized conditions has been applied in industry and exhibits superior economic benefits to conventional Ti anodic materials.
文摘Aim To explore interaction mode between amphoteric molecules with the orderedphospholipid membrane. Methods Membrane interactions were determined by immobilized artificialmembrane (IAM) chromatography and solutes' hydrophobicity was measured by n-octanol/buffer system.Results The ampholytes, similar to bases, generally exhibited higher membrane affinity than expectedfrom their hydrophobicity, resulting from the attractive polar interaction with phospholipidmembrane. Furthermore, the strength of additional polar interaction with membrane (Δlg k_(IAM)) wasthen calculated. The Δlg k_(IAM) values were far greater for bases and ampholytes ranging from0.50 - 1.39, than those for acids and neutrals with the scope from - 0.55 - 0.44. ConclusionConsidering the microspecies distribution of amphoteric molecules, it was assumed that not onlyneutral and positive but also zwitterionic microspecies are capable of partitioning into orderedamphoteric lipid membrane with complementarily conformational and energetically favorableinteractions.
文摘Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made.
基金supported by the Key Scientific Development Project of Guangdong Province(2015A030308019)the Guangzhou Scientific and Technological Development Plan(2014J4100217)the Hundred Talents Program of Chinese Academy of Sciences
文摘Due to the presence of graphite flake cascades, the real graphite anode of Li-ion battery shows non-iso- tropic characteristic. The present work developed an ellipsoid-based simulated annealing method and numeri- cally reconstructed the three-dimensional microstructure of a graphite anode. The reconstructed anode is a composite of three clearly distinguished phases: pore (or electrolyte), graphite, and solid additives, well representing the non- isotropic heterogeneous characteristic of real graphite anode. Characterization analysis of the reconstructed electrode gives information such as the connectivity of individual phase, the specific interracial area between solid and pore phase, and the pore size distribution. The effects of the ellipsoid size on the structural characteristics of graphite anode were particularly studied. As the size of the ellipsoidal particle slightly increases, the average pore diameter increases and as a result the specific interfacial area between the solid and pore phase in the reconstructed area decreases; compared with the equatorial radius, the polar radius of ellipsoidal graphite particles has more sig- nificant influence on the characteristics of electrode microstructure.
基金supported by the State Basic Key Research Program of China (Grant No. 2012CB921601)China National Funds for Distinguished Young Scientists (Grant No. 11125418)the National Natural Science Foundation of China (Grant Nos. 10974125,61121064 and60978017)
文摘A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom steps and photon anti-bunching are observed by a photon-counting-based HBT system using fluorescence light. The average atom dwelling time in the FORT is about 9 s. To reduce the background noise in the detection procedure we employ a weak probe laser tuned to the D1 line to il- lurninate the single atom from the direction perpendicular to the large-numerical-aperture collimation system. The second or- der degree of coherence g(2)(r)=0.12_+0.02 is obtained directly from the fluorescence light of the single atom without deducting the background. The background light has been suppressed to 10 counts per 50 ms, which is much lower compared with the reported results. The measured g(2)(r) is in good agreement with theoretical analysis. The system provides a simple and effi- cient method to manipulate and measure single neutral atoms, and opens a way to create an efficient controlled single-photon source.
基金supported by the National Natural Science Foundation of China (51801169)Hong Kong Research Grant Council (CityU Grant 9360161, 9042635, 9042879)the internal funding from the City University of Hong Kong (CityU 9380060)。
文摘Low-carbon advanced nanostructured steels have been developed for various structural engineering applications, including bridges, automobiles, and other strength-critical applications such as the reactor pressure vessels in nuclear power stations. The mechanical performances and applications of these steels are strongly dependent on their microstructural features. By controlling the size,number density, distribution, and types of precipitates, it is possible to produce nanostructured steels with a tensile strength reaching as high as 2 GPa while keeping a decent tensile elongation above 10% and a reduction of area as high as 40%. Besides, through a careful control of strength contributions from multiple strengthening mechanisms, the nanostructured steels with superior strengths and low-temperature impact toughness can be obtained by avoiding the temper embrittlement regime. With appropriate Mn additions, these nanostructured steels can achieve a triple enhancement in ductility(total tensile elongation, TE of ~30%) at no expense of strengths(yield strength, YS of ~1100 to 1300 MPa, ultimate tensile strength, UTS of ~1300 to 1400 MPa). More importantly, these steels demonstrate good fabricability and weldability. In this paper, the microstructure-property relationships of these advanced nanostructured steels are comprehensively reviewed. In addition, the current limitations and future development of these nanostructured steels are carefully discussed and outlined.