Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagneti...Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagnetic particles, which forms a chain-like structure. Therefore its mechanical, electric, and magnetic properties can be changed by the applied magnetic field, which is called as the magneto-induced effect. But this effect is not remarkable enough currently for the engineering application. So it is important for material preparation to optimize parameters to enhance the magneto-induced effect. In this work, based on chain-like model, some factors influencing the magneto-induced effect of MRE were analyzed theoretically by using dipole method with the normal distribution of chain's angle introduced. The factors included the oblique angle of particles chains, magnetic field intensity, and shear strain, etc. Some experiments were also carried out.展开更多
The procedure of reliability-based fatigue analysis of liquefied natural gas(LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave headi...The procedure of reliability-based fatigue analysis of liquefied natural gas(LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method(FEM) . Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis,Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory,fatigue damage is characterized by an S-N relationship,and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.50830202 and No.60804018) and the Plan of the Excellent Talent for the New Century (NCET-07-0910). The authors also appreciate the help in the experimental instruments of Professor Xing-long Gong of University of Science and Technology of China deeply.
文摘Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagnetic particles, which forms a chain-like structure. Therefore its mechanical, electric, and magnetic properties can be changed by the applied magnetic field, which is called as the magneto-induced effect. But this effect is not remarkable enough currently for the engineering application. So it is important for material preparation to optimize parameters to enhance the magneto-induced effect. In this work, based on chain-like model, some factors influencing the magneto-induced effect of MRE were analyzed theoretically by using dipole method with the normal distribution of chain's angle introduced. The factors included the oblique angle of particles chains, magnetic field intensity, and shear strain, etc. Some experiments were also carried out.
文摘The procedure of reliability-based fatigue analysis of liquefied natural gas(LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method(FEM) . Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis,Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory,fatigue damage is characterized by an S-N relationship,and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.