Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections ...Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor.展开更多
Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in d...Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite.展开更多
In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of...In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.展开更多
Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)a...Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)are of the Ga-polarity,while GaN films grown on SiC(0001)with Si adlayer are of the N-polarity if there is no N-Si interchange at the interface.With the interchange,the GaN films are of the Ga-polarity.展开更多
In order to take a precise and objective evaluation on asphalt-aggregate adhesion, this paper analyzed the function at asphalt- aggregate interface using surface free energy theory. Two asphalts and two aggregates wer...In order to take a precise and objective evaluation on asphalt-aggregate adhesion, this paper analyzed the function at asphalt- aggregate interface using surface free energy theory. Two asphalts and two aggregates were selected and their surface free energy parameters, FLW, F and F-, were measured by the Wilhelmy plate method and the column wicking technique, respectively. Then, the resistance to moisture damage of asphalt mixture were predicted using calculated asphalt-aggregate adhesive bond energy and asphalt cohesive bond energy. The results show that moisture damage is a thermodynamically favorable phenomenon. Asphalt with a great acid-base polar component and a low Lifshitz-van der Waals apolar component always exhibits perfect cohesion.展开更多
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp...Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.展开更多
Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the mu...Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.展开更多
Minimax programming problems involving generalized (p, r)-invex functions are consid- ered. Parametric sufficient optimality conditions and duality results are established under the aforesaid assumptions on the obje...Minimax programming problems involving generalized (p, r)-invex functions are consid- ered. Parametric sufficient optimality conditions and duality results are established under the aforesaid assumptions on the objective and constraint functions.展开更多
Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic fla...Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic flat-band model based on threefold degenerate p-orbitals in two-dimensional ionic materials. Our theoretical analysis and first-principles calculations show that the proposed flat-band can be realized in 1 T layered materials of alkali-metal chalogenides and metal-carbon group compounds. Some of the former are theoretically predicted to be stable as layered materials(e.g., K2 S), and some of the latter have been experimentally fabricated in previous works(e.g., Gd2 CCl2). More interestingly, the flat-band is partially filled in the heterostructure of a K2 S monolayer and graphene layers. The spin polarized nearly flatband can be realized in the ferromagnetic state of a Gd2 CCl2 monolayer, which has been fabricated in experiments. Our theoretical model together with the material predictions provide a realistic platform for the study of flat-bands and related exotic quantum phases.展开更多
An annular sector model for the telephone cord buckles of elastic thin films on rigid substrates is established, in which the von Krman plate equations in polar coordinates are used for the elastic thin film and a dis...An annular sector model for the telephone cord buckles of elastic thin films on rigid substrates is established, in which the von Krman plate equations in polar coordinates are used for the elastic thin film and a discrete version of the Griffith criterion is applied to determine the shape and scale of the parameters. A numerical algorithm combining the Newmark-β scheme and the Chebyshev collocation method is designed to numerically solve the problem in a quasi-dynamic process. Numerical results are presented to show that the numerical method works well and the model agrees well with physical observations, especially successfully simulated for the first time the telephone cord buckles with two humps along the ridge of each section of a buckle.展开更多
文摘Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor.
基金Project (09001232) supported by the Doctoral Foundation of Henan University of Science and Technology,China
文摘Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite.
基金Project(KZCX2-YW-T12)supported by the Chinese Academy of Science,China
文摘In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.
文摘Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)are of the Ga-polarity,while GaN films grown on SiC(0001)with Si adlayer are of the N-polarity if there is no N-Si interchange at the interface.With the interchange,the GaN films are of the Ga-polarity.
文摘In order to take a precise and objective evaluation on asphalt-aggregate adhesion, this paper analyzed the function at asphalt- aggregate interface using surface free energy theory. Two asphalts and two aggregates were selected and their surface free energy parameters, FLW, F and F-, were measured by the Wilhelmy plate method and the column wicking technique, respectively. Then, the resistance to moisture damage of asphalt mixture were predicted using calculated asphalt-aggregate adhesive bond energy and asphalt cohesive bond energy. The results show that moisture damage is a thermodynamically favorable phenomenon. Asphalt with a great acid-base polar component and a low Lifshitz-van der Waals apolar component always exhibits perfect cohesion.
基金Project(200612) supported by Hunan Province Transportation Department of China
文摘Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.
基金supported by the Department of Energy (No.DE-FG02-03ER25587)the Office of Naval Research(No.N00014-01-1-0674)an Alfred P.Sloan Research Fellowship and a startup grant from University of Texas at Austin
文摘Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.
文摘Minimax programming problems involving generalized (p, r)-invex functions are consid- ered. Parametric sufficient optimality conditions and duality results are established under the aforesaid assumptions on the objective and constraint functions.
基金supported by the National Basic Research Program of China(2015CB921102 and 2019YFA0308403)the National Natural Science Foundation of China(11674028 and11822407)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)China Postdoctoral Science Foundation(2020M670011)。
文摘Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic flat-band model based on threefold degenerate p-orbitals in two-dimensional ionic materials. Our theoretical analysis and first-principles calculations show that the proposed flat-band can be realized in 1 T layered materials of alkali-metal chalogenides and metal-carbon group compounds. Some of the former are theoretically predicted to be stable as layered materials(e.g., K2 S), and some of the latter have been experimentally fabricated in previous works(e.g., Gd2 CCl2). More interestingly, the flat-band is partially filled in the heterostructure of a K2 S monolayer and graphene layers. The spin polarized nearly flatband can be realized in the ferromagnetic state of a Gd2 CCl2 monolayer, which has been fabricated in experiments. Our theoretical model together with the material predictions provide a realistic platform for the study of flat-bands and related exotic quantum phases.
基金supported by the Major State Basic Research Projects (Grant No. 2005CB321701)National Natural Science Foundation of China (Grant No. 10871011)Research Foundation of Doctoral Program of the Ministry of Education of China (Grant No. 20060001007)
文摘An annular sector model for the telephone cord buckles of elastic thin films on rigid substrates is established, in which the von Krman plate equations in polar coordinates are used for the elastic thin film and a discrete version of the Griffith criterion is applied to determine the shape and scale of the parameters. A numerical algorithm combining the Newmark-β scheme and the Chebyshev collocation method is designed to numerically solve the problem in a quasi-dynamic process. Numerical results are presented to show that the numerical method works well and the model agrees well with physical observations, especially successfully simulated for the first time the telephone cord buckles with two humps along the ridge of each section of a buckle.