Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O...Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O,N)usually requires air or moisture‐sensitive and strong reducing agents,which limit the feasibility of substrate scope.Herein we describe a photo‐induced reductive cross‐coupling reaction of aldehydes,ketones and imines with electron‐deficient arenes(aromatic nitriles)using fac‐Ir(ppy)3as a photocatalyst and diisopropylethylamine(DIPEA)as a terminal reductant under visible light irradiation.Mild conditions and high yields mean that this new polarity inversion strategy can be used with aryl‐substituted alcohols and amines.Spectroscopic studies and control experiments have demonstrated the oxidative quenching of Ir(ppy)3*by electron‐deficient arenes involved in the key step for the C–C bond formation.展开更多
Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigat...Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical performance was characterized by long-term cycling, cyclic voltammetry, and in-situ impedance spectroscopy. The results indicated that high temperature rendered layered oxides to lose lithium/oxygen in the interior and exterior, and induced cationic disordering. Besides, the solid-phase synthesis process promoted phase transformation for electrode materials, causing the coexisting multi-phase in a single particle. High temperature can foster the growth of single particles, but it caused unstable structure of layered phase.展开更多
Ab initio within the full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach is applied to study the electronic structures of two compounds NaK3(NpO2)4(SO4)4(H2O)2 and NaNpO2SO...Ab initio within the full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach is applied to study the electronic structures of two compounds NaK3(NpO2)4(SO4)4(H2O)2 and NaNpO2SO4H2O. The present calculations show that the major part of the spin magnetic moment in these two compounds is from Np(V) ions, and the origin of the cation-cation interactions between Np comes from the spin polarization effect within Np-ONv-Np bonds.展开更多
Rh(Ⅲ)-catalyzed, chelation-assisted oxidative C-H imidation of arenes with N-H imide have been realized using PhI(OAc)2 as an oxidant. This transformation exhibits a broad substrate scope and tolerates various functi...Rh(Ⅲ)-catalyzed, chelation-assisted oxidative C-H imidation of arenes with N-H imide have been realized using PhI(OAc)2 as an oxidant. This transformation exhibits a broad substrate scope and tolerates various functional groups. The reaction proceeded via in situ generation of an iodine(Ⅲ) imido. DFT calculations suggest that this oxidative imidaton system proceeds via a Rh(Ⅲ)-Rh(Ⅴ)-Rh(Ⅲ) pathway.展开更多
FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack alumini...FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack aluminization technique had excellent adhesion and was conductive enough to permit conditions favorable for the precipitation of alumina oxyhydroxide during aluminum diffusion coatings. In this work, the bed was prepared as a mixture of A1, NH4C1 and A1203. In the high-activity bed were heat-treated at 1,173 K in an atmosphere made up of team with subsequent air-cooling. The effect of the bed content on the coating was examined. With the high-activity, the desired Fe2Al5 was formed as the outermost coating layer. The coating presented chemical composition gradients suitable for strong adhesion. The improvement of the thermal oxidation behaviour was studied at 1,373 K. Two different aqueous environments, which are (1) NaC1 and (2) H2SO4, are employed for using the technique of potentiodynamic polarization curve. The obtained experimental electrochemical parameters (Ecorr, Jcorr etc,) were used to compare the corrosion resistance of the tested steel state complemented by MEB (electronic scanning microscopy) in combination with dispersive analysis X in energy (EDS) or X ray diffraction indicated that the elements concentration maximum was located in the vicinity of the interface especially in the FeCrAI (Ce) coated by spherical A1203 powder. These results an discussed in terms of an addition effect on the development of the microstructure of oxide films.展开更多
Developing suitable electrode materials capable of tolerating severe structural deformation and overcoming sluggish reaction kinetics resulting from the large radius of potassium ion(K+)insertion is critical for pract...Developing suitable electrode materials capable of tolerating severe structural deformation and overcoming sluggish reaction kinetics resulting from the large radius of potassium ion(K+)insertion is critical for practical applications of potassium-ion batteries(PIBs).Herein,a superior anode material featuring an intriguing hierarchical structure where assembled MoSSe nanosheets are tightly anchored on a highly porous micron-sized carbon sphere and encapsulated within a thin carbon layer(denoted as Cs@MoSSe@C)is reported,which can significantly boost the performance of PIBs.The assembled MoSSe nanosheets with expanded interlayer spacing and rich anion vacancy can facilitate the intercalation/deintercalation of K+and guarantee abundant active sites together with a low K+diffusion barrier.Meanwhile,the thin carbon protective layer and the highly porous carbon sphere matrix can alleviate the volume expansion and enhance the charge transport within the composite.Under these merits,the as-prepared Cs@MoSSe@C anode exhibits a high reversible capacity(431.8 mAh g^(-1) at 0.05 A g^(-1)),good rate capability(161 mAh g^(-1) at 5 A g^(-1)),and superior cyclic performance(70.5%capacity retention after 600 cycles at 1 A g^(-1)),outperforming most existing Mo-based S/Se anodes.The underlying mechanisms and origins of superior performance are elucidated by a set of correlated in-situ/ex-situ characterizations and theoretical calculations.Further,a PIB full cell based on Cs@MoSSe@C anode also exhibits an impressive electrochemical performance.This work provides some insights into developing high-performance PIBs anodes with transition-metal chalcogenides.展开更多
An enantioselective umpolung γ-addition reaction of 3’-indolyl-3-oxindoles to allenoates catalyzed by amino acid-derived bifunctional phosphine catalysts has been developed. A wide range of chiral mixed 3,3’-bisind...An enantioselective umpolung γ-addition reaction of 3’-indolyl-3-oxindoles to allenoates catalyzed by amino acid-derived bifunctional phosphine catalysts has been developed. A wide range of chiral mixed 3,3’-bisindole scaffolds containing an all-carbon quaternary stereogenic center were obtained in high yields and with excellent enantioselectivities. 3,3’-Bisindoles are valuable synthetic intermediates, the employment of which led to formal total syntheses of(+)-Chimonanthine,(+)-Folicanthine and(-)-Calycanthine, as well as facile creation of useful pyrrolidinoindoline core structure.展开更多
Umpolung is a fundamental concept in organic chemistry, which provides an alternative strategy for the synthesis of target compounds which were not easily accessible by conventional methods. Herein, a mild and efficie...Umpolung is a fundamental concept in organic chemistry, which provides an alternative strategy for the synthesis of target compounds which were not easily accessible by conventional methods. Herein, a mild and efficient PhI(OAc)_2-promoted umpolung acetoxylation reactions of enamides was developed for the synthesis of α-acetoxy ketones. The reaction tolerates a wide range of functional groups and affords α-acetoxy ketones in good to excellent yields. PhI(OAc)_2 serves as a source of acetoxy in the reaction.展开更多
Multicolor luminescent rare-earth ion-doped Y2O3 nanocrystals (NCs) were prepared by a solvethermal method. The as-synthesized NCs yielded nanosheets, nanowires (NWs) and nanorods (NRs) with the increase of alka...Multicolor luminescent rare-earth ion-doped Y2O3 nanocrystals (NCs) were prepared by a solvethermal method. The as-synthesized NCs yielded nanosheets, nanowires (NWs) and nanorods (NRs) with the increase of alkali (NaOH) in oleic acid system. Moreover, Y203 nanowires with controllable size have also been obtained. After sintering, the PL intensity of Y2O3:Ln3+ nanocrystals increased with the changed morphology of the precursor, that is, Y(OH)3 nanocrystals. Both downconversion (red emission for Y2O3:Eu3+ and green emission for Y2O3:Tb3+) and upconversion (red emission for Y2O3:Yb/Er3+) luminescence of the as-prepared nanocrystals have been demonstrated in this work. We also found that the PL intensity of Y2O3:Ln3+ NCs dispersed in polar solvent was stronger than that in nonpolar solvent. Their up/downconversion fluorescence and controllable morphology might promise further fundamental research and biochemistry such as nanoscale optoelectronics, nanolasers, and ultrasensitive multicolor biolables.展开更多
We describe an all-optical wavelength conversion scheme for 1310 nm to 1550 nm based on nonlinear polarization rotation in a gain-transparent semiconductor optical amplifier (GT-SOA) which brings in the assistant li...We describe an all-optical wavelength conversion scheme for 1310 nm to 1550 nm based on nonlinear polarization rotation in a gain-transparent semiconductor optical amplifier (GT-SOA) which brings in the assistant light to improve the property of the converted light. From the SOA carder density equations, the 1310 nm-to-1550 nm wavelength conversion scheme is analyzed by the Jones matrix. The phase shift between TE and TM modes and the converted light are simulated at bit rate of 30 Gbit/s. We also analyze the influence of the input signal power, the injected current and the assistant light power on the extinction ratio of the converted li~,ht.展开更多
文摘Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O,N)usually requires air or moisture‐sensitive and strong reducing agents,which limit the feasibility of substrate scope.Herein we describe a photo‐induced reductive cross‐coupling reaction of aldehydes,ketones and imines with electron‐deficient arenes(aromatic nitriles)using fac‐Ir(ppy)3as a photocatalyst and diisopropylethylamine(DIPEA)as a terminal reductant under visible light irradiation.Mild conditions and high yields mean that this new polarity inversion strategy can be used with aryl‐substituted alcohols and amines.Spectroscopic studies and control experiments have demonstrated the oxidative quenching of Ir(ppy)3*by electron‐deficient arenes involved in the key step for the C–C bond formation.
基金financial supports from the National Natural Science Foundation of China (51974368)the Fundamental Research Funds of the Central South University,China。
文摘Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical performance was characterized by long-term cycling, cyclic voltammetry, and in-situ impedance spectroscopy. The results indicated that high temperature rendered layered oxides to lose lithium/oxygen in the interior and exterior, and induced cationic disordering. Besides, the solid-phase synthesis process promoted phase transformation for electrode materials, causing the coexisting multi-phase in a single particle. High temperature can foster the growth of single particles, but it caused unstable structure of layered phase.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10574048 and 20490210
文摘Ab initio within the full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach is applied to study the electronic structures of two compounds NaK3(NpO2)4(SO4)4(H2O)2 and NaNpO2SO4H2O. The present calculations show that the major part of the spin magnetic moment in these two compounds is from Np(V) ions, and the origin of the cation-cation interactions between Np comes from the spin polarization effect within Np-ONv-Np bonds.
文摘Rh(Ⅲ)-catalyzed, chelation-assisted oxidative C-H imidation of arenes with N-H imide have been realized using PhI(OAc)2 as an oxidant. This transformation exhibits a broad substrate scope and tolerates various functional groups. The reaction proceeded via in situ generation of an iodine(Ⅲ) imido. DFT calculations suggest that this oxidative imidaton system proceeds via a Rh(Ⅲ)-Rh(Ⅴ)-Rh(Ⅲ) pathway.
文摘FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack aluminization technique had excellent adhesion and was conductive enough to permit conditions favorable for the precipitation of alumina oxyhydroxide during aluminum diffusion coatings. In this work, the bed was prepared as a mixture of A1, NH4C1 and A1203. In the high-activity bed were heat-treated at 1,173 K in an atmosphere made up of team with subsequent air-cooling. The effect of the bed content on the coating was examined. With the high-activity, the desired Fe2Al5 was formed as the outermost coating layer. The coating presented chemical composition gradients suitable for strong adhesion. The improvement of the thermal oxidation behaviour was studied at 1,373 K. Two different aqueous environments, which are (1) NaC1 and (2) H2SO4, are employed for using the technique of potentiodynamic polarization curve. The obtained experimental electrochemical parameters (Ecorr, Jcorr etc,) were used to compare the corrosion resistance of the tested steel state complemented by MEB (electronic scanning microscopy) in combination with dispersive analysis X in energy (EDS) or X ray diffraction indicated that the elements concentration maximum was located in the vicinity of the interface especially in the FeCrAI (Ce) coated by spherical A1203 powder. These results an discussed in terms of an addition effect on the development of the microstructure of oxide films.
基金supported by the National Natural Science Foundation of China(52072323,52122211,51872098,21975154,and22179078)the “Double-First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University+1 种基金the financial support from the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal MaterialsHenan Key Laboratory of High-temperature Structural and Functional Materials,Henan University of Science and Technology(HKDNM2019013)。
文摘Developing suitable electrode materials capable of tolerating severe structural deformation and overcoming sluggish reaction kinetics resulting from the large radius of potassium ion(K+)insertion is critical for practical applications of potassium-ion batteries(PIBs).Herein,a superior anode material featuring an intriguing hierarchical structure where assembled MoSSe nanosheets are tightly anchored on a highly porous micron-sized carbon sphere and encapsulated within a thin carbon layer(denoted as Cs@MoSSe@C)is reported,which can significantly boost the performance of PIBs.The assembled MoSSe nanosheets with expanded interlayer spacing and rich anion vacancy can facilitate the intercalation/deintercalation of K+and guarantee abundant active sites together with a low K+diffusion barrier.Meanwhile,the thin carbon protective layer and the highly porous carbon sphere matrix can alleviate the volume expansion and enhance the charge transport within the composite.Under these merits,the as-prepared Cs@MoSSe@C anode exhibits a high reversible capacity(431.8 mAh g^(-1) at 0.05 A g^(-1)),good rate capability(161 mAh g^(-1) at 5 A g^(-1)),and superior cyclic performance(70.5%capacity retention after 600 cycles at 1 A g^(-1)),outperforming most existing Mo-based S/Se anodes.The underlying mechanisms and origins of superior performance are elucidated by a set of correlated in-situ/ex-situ characterizations and theoretical calculations.Further,a PIB full cell based on Cs@MoSSe@C anode also exhibits an impressive electrochemical performance.This work provides some insights into developing high-performance PIBs anodes with transition-metal chalcogenides.
基金Yixin Lu thanks the Singapore National Research Foundation,Prime Minister’s Office for the NRF Investigatorship Award(R-143-000-A15-281)Financial supports from the National University of Singapore(R-143-000-695-114 and C-141-000-092-001)the National Natural Science Foundation of China(21672158)are also gratefully acknowledged.
文摘An enantioselective umpolung γ-addition reaction of 3’-indolyl-3-oxindoles to allenoates catalyzed by amino acid-derived bifunctional phosphine catalysts has been developed. A wide range of chiral mixed 3,3’-bisindole scaffolds containing an all-carbon quaternary stereogenic center were obtained in high yields and with excellent enantioselectivities. 3,3’-Bisindoles are valuable synthetic intermediates, the employment of which led to formal total syntheses of(+)-Chimonanthine,(+)-Folicanthine and(-)-Calycanthine, as well as facile creation of useful pyrrolidinoindoline core structure.
基金supported by the National Natural Science Foundation of China (21622203, 21472147, 21272183)the Fund of Northwest University (334100036)
文摘Umpolung is a fundamental concept in organic chemistry, which provides an alternative strategy for the synthesis of target compounds which were not easily accessible by conventional methods. Herein, a mild and efficient PhI(OAc)_2-promoted umpolung acetoxylation reactions of enamides was developed for the synthesis of α-acetoxy ketones. The reaction tolerates a wide range of functional groups and affords α-acetoxy ketones in good to excellent yields. PhI(OAc)_2 serves as a source of acetoxy in the reaction.
文摘Multicolor luminescent rare-earth ion-doped Y2O3 nanocrystals (NCs) were prepared by a solvethermal method. The as-synthesized NCs yielded nanosheets, nanowires (NWs) and nanorods (NRs) with the increase of alkali (NaOH) in oleic acid system. Moreover, Y203 nanowires with controllable size have also been obtained. After sintering, the PL intensity of Y2O3:Ln3+ nanocrystals increased with the changed morphology of the precursor, that is, Y(OH)3 nanocrystals. Both downconversion (red emission for Y2O3:Eu3+ and green emission for Y2O3:Tb3+) and upconversion (red emission for Y2O3:Yb/Er3+) luminescence of the as-prepared nanocrystals have been demonstrated in this work. We also found that the PL intensity of Y2O3:Ln3+ NCs dispersed in polar solvent was stronger than that in nonpolar solvent. Their up/downconversion fluorescence and controllable morphology might promise further fundamental research and biochemistry such as nanoscale optoelectronics, nanolasers, and ultrasensitive multicolor biolables.
基金supported by the National Natural Science Foundation of China(No.61077014)
文摘We describe an all-optical wavelength conversion scheme for 1310 nm to 1550 nm based on nonlinear polarization rotation in a gain-transparent semiconductor optical amplifier (GT-SOA) which brings in the assistant light to improve the property of the converted light. From the SOA carder density equations, the 1310 nm-to-1550 nm wavelength conversion scheme is analyzed by the Jones matrix. The phase shift between TE and TM modes and the converted light are simulated at bit rate of 30 Gbit/s. We also analyze the influence of the input signal power, the injected current and the assistant light power on the extinction ratio of the converted li~,ht.