The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement...The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement of cathodic polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to clearly elaborate the corrosion behavior of PCB-ENIG in the atmospheric environment. Results indicated that the cathodic process of PCB-ENIG under ATEL was dominated by the reduction of dissolved oxygen, corrosion products, and H2O. The cathodic current density of PCB-ENIG increased progressively with increasing RH. Moreover, its cathodic current density in the solution was greater than that under ATEL. This result demonstrated that the diffusion process was not the controlling step during the limiting reduction of cathodic oxygen. When the polarization potentials were located in a more negative region, the cathodic polarization current density gradually decreased under 75% and 85% RH. Notably, the anodic process became the controlling step in the extremely thin liquid film during the remainder of the experiment.展开更多
Mg-Gd-Y-Zr alloys were purified by filtering purification with and without vacuum. The type, morphology, size distribution and volume fraction of inclusion were analyzed with OM and SEM. The effect of inclusion in Mg-...Mg-Gd-Y-Zr alloys were purified by filtering purification with and without vacuum. The type, morphology, size distribution and volume fraction of inclusion were analyzed with OM and SEM. The effect of inclusion in Mg-Gd-Y-Zr alloys on anticorrosion ability was investigated with salt spray test and electrochemical test. The results show that the inclusions in the alloy can be removed effectively by filtering purification. The average size of inclusions in the alloys is decreased from 12.7 μm to 2.0 μm and the volume fraction of inclusions is reduced from 0.30% to 0.04%. With the decrease of the size of inclusions in the alloys, the corrosion rate of the alloys decreases dramatically from 38.8 g/(m 2 ·d) to 2.4 g/(m 2 ·d) in the salt spray test. The corrosion potential increases while the corrosion current decreases and the polarization resistance increases in the electrochemical tests, which indicates that the anticorrosion ability is improved.展开更多
In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by...In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.展开更多
The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron micros...The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron microscopy(SEM). The results show that the cathodic diffusion current density presents the variation trend of initial increase and subsequent decrease with the decrease of TEL thickness, and the maximum deposits at 58 μm. The cotangent-hyperbolic impedance(O) is rationally first introduced to study the diffusion process of the reactants through the corrosion products layer with many permeable holes. The initial corrosion rate of 907 steel under different TEL thickness increases with the decrease of TEL thickness except that of 104 μm,whereas the corrosion rate after long time corrosion can be ranked as 104 μm﹥402 μm﹥198 μm﹥301 μm﹥bulk solution.展开更多
Electrochemical removal of ammonia is a new and effective method in coking wastewater.The reaction mechanism of ammonia removal was proved by stable polarization curve in this paper.First,the supposing of reaction ste...Electrochemical removal of ammonia is a new and effective method in coking wastewater.The reaction mechanism of ammonia removal was proved by stable polarization curve in this paper.First,the supposing of reaction steps of the electrode were proposed.And then reaction parameter of the electrode was measured by Tafel curve.Finally,the reaction mechanism was determined by quasi-equilibrium approach.The results showed that Cl2+H2O→HOCl+H++Cl was the rate-determining step,the calculated apparent transfer coefficient was uniform to the experimental value.展开更多
The corrosion of coal mine equipment immersed in coal slurry is addressed. The corrosion of low carbon steel samples immersed in coal slurries of different concentrations (80, 130, and 180g/L) prepared from coals of...The corrosion of coal mine equipment immersed in coal slurry is addressed. The corrosion of low carbon steel samples immersed in coal slurries of different concentrations (80, 130, and 180g/L) prepared from coals of different rank (long-flame coal, meager lean coal, and anthracite) and different granularity (0.25-0.5 ram, 0.074-0.25 mm, and less than 0.074 mm particle size) was studied by the electrochemical method of polarization curve measurement, controlled potential sweeping, and continuous scanning. The results show that the corrosion rate in an anthracite slurry, where the coal has high coalification, is far greater than corrosion in a long-flame or a meager lean coal slurry. Furthermore the corrosion current, polarization current, and corrosion rate of low carbon steel become larger, and the polarizability becomes smaller, as the coal particle size decreases. The same trend is seen as the concentration of the coal slurry increases.展开更多
A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
基金Project(51271032)supported by the National Natural Science Foundation of ChinaProject(2014CB643300)supported by the National Basic Research Program of ChinaProject supported by the National Environmental Corrosion Platform,China
文摘The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement of cathodic polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to clearly elaborate the corrosion behavior of PCB-ENIG in the atmospheric environment. Results indicated that the cathodic process of PCB-ENIG under ATEL was dominated by the reduction of dissolved oxygen, corrosion products, and H2O. The cathodic current density of PCB-ENIG increased progressively with increasing RH. Moreover, its cathodic current density in the solution was greater than that under ATEL. This result demonstrated that the diffusion process was not the controlling step during the limiting reduction of cathodic oxygen. When the polarization potentials were located in a more negative region, the cathodic polarization current density gradually decreased under 75% and 85% RH. Notably, the anodic process became the controlling step in the extremely thin liquid film during the remainder of the experiment.
基金Project(2007CB613700)supported by the National Basic Research Program of China
文摘Mg-Gd-Y-Zr alloys were purified by filtering purification with and without vacuum. The type, morphology, size distribution and volume fraction of inclusion were analyzed with OM and SEM. The effect of inclusion in Mg-Gd-Y-Zr alloys on anticorrosion ability was investigated with salt spray test and electrochemical test. The results show that the inclusions in the alloy can be removed effectively by filtering purification. The average size of inclusions in the alloys is decreased from 12.7 μm to 2.0 μm and the volume fraction of inclusions is reduced from 0.30% to 0.04%. With the decrease of the size of inclusions in the alloys, the corrosion rate of the alloys decreases dramatically from 38.8 g/(m 2 ·d) to 2.4 g/(m 2 ·d) in the salt spray test. The corrosion potential increases while the corrosion current decreases and the polarization resistance increases in the electrochemical tests, which indicates that the anticorrosion ability is improved.
基金Project (51004056) supported by the National Natural Science Foundation of ChinaProject (KKZ6201152009) supported by the Opening Foundation of Key Laboratory of Inorganic Coating Materials, ChinaProjects (2011239, 2011240) supported by Analysis and Measurement Research Fund of Kunming University of Science and Technology,China
文摘In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.
基金Projects(21073162,21273199) supported by the National Natural Science Foundation of ChinaProject(GCTKF2012013) supported by the Science and Technology Bureau of Jiaxing Municipality and the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,China
文摘The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron microscopy(SEM). The results show that the cathodic diffusion current density presents the variation trend of initial increase and subsequent decrease with the decrease of TEL thickness, and the maximum deposits at 58 μm. The cotangent-hyperbolic impedance(O) is rationally first introduced to study the diffusion process of the reactants through the corrosion products layer with many permeable holes. The initial corrosion rate of 907 steel under different TEL thickness increases with the decrease of TEL thickness except that of 104 μm,whereas the corrosion rate after long time corrosion can be ranked as 104 μm﹥402 μm﹥198 μm﹥301 μm﹥bulk solution.
基金Supported by the National Natural Science Foundation of China (20771080 20876104)
文摘Electrochemical removal of ammonia is a new and effective method in coking wastewater.The reaction mechanism of ammonia removal was proved by stable polarization curve in this paper.First,the supposing of reaction steps of the electrode were proposed.And then reaction parameter of the electrode was measured by Tafel curve.Finally,the reaction mechanism was determined by quasi-equilibrium approach.The results showed that Cl2+H2O→HOCl+H++Cl was the rate-determining step,the calculated apparent transfer coefficient was uniform to the experimental value.
基金subsidized by the National Natural Science Foundation of China for Innovative Research Group (No.50921002)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The corrosion of coal mine equipment immersed in coal slurry is addressed. The corrosion of low carbon steel samples immersed in coal slurries of different concentrations (80, 130, and 180g/L) prepared from coals of different rank (long-flame coal, meager lean coal, and anthracite) and different granularity (0.25-0.5 ram, 0.074-0.25 mm, and less than 0.074 mm particle size) was studied by the electrochemical method of polarization curve measurement, controlled potential sweeping, and continuous scanning. The results show that the corrosion rate in an anthracite slurry, where the coal has high coalification, is far greater than corrosion in a long-flame or a meager lean coal slurry. Furthermore the corrosion current, polarization current, and corrosion rate of low carbon steel become larger, and the polarizability becomes smaller, as the coal particle size decreases. The same trend is seen as the concentration of the coal slurry increases.
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.