Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nan...Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nanopores are found in the anodic films formed in the electrolytes after high-temperature storage(HTS)at 130°C for 240 h.A comparison of the voltage-time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes.FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures.Combining the electronic current theory and oxygen bubble mold effect,the change in electrolyte composition could increase the electronic current in the anodizing process.The electronic current decreases the formation efficiency of anodic oxide films,and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films.The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.展开更多
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole en...Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.展开更多
Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon an...Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon and the cosmic horizon are related to Bekenstein-Hawking entropy if we take the energy conservation into consideration, and the true radiate spectrum is not precisely thermal.展开更多
Influencing factors, and variations and trends of Antarctic ozone hole in recent decades are analyzed, and sudden change processes of ozone at Zhongshan station and the effect of atmospheric dynamic processes on ozone...Influencing factors, and variations and trends of Antarctic ozone hole in recent decades are analyzed, and sudden change processes of ozone at Zhongshan station and the effect of atmospheric dynamic processes on ozone changes are also discussed by using the satellite ozone data and the ground-measured ozone data at two Antarctic stations as well as the NCEP/NCAR reanalysis data. The results show that equivalent effective stratospheric chlorine (EESC) and stratospheric temperature are two important factors influencing the ozone hole. The column ozone at Zhongshan and Syowa stations is significantly related with EESC and stratospheric temperature, which means that even though the two stations are both located on the edge of the ozone hole, EESC and stratospheric temperature still played a very important role in column ozone changes, and mean while verifies that EESC is applicable on the coast of east Antarctic continent. Decadal changes in EESC are similar with those of the ozone hole, and inter-annual variations of ozone are closely related with stratospheric temperature. Based on the relation of EESC and ozone hole size, it can be projected that the ozone hole size will gradually reduce to the 1980's level from 2010 to around 2070. Of course there might exist many uncertainties in the projection, which therefore needs to be further studied.展开更多
Considering the self-gravitation and energy conservation as well as charge conservation, we extend Medved and Vagenas's quantum tunneling method to the global monopole charged black hole, and give a correction to Haw...Considering the self-gravitation and energy conservation as well as charge conservation, we extend Medved and Vagenas's quantum tunneling method to the global monopole charged black hole, and give a correction to Hawking radiation of a charged particle.展开更多
Si-Jie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expecte...Si-Jie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expected number of particles in any wave packet belonging to spontaneously produced from the state , which confirms the traditional belief that extremal black holes do not radiate particles. Making some modifications, we demonstrate that the analysis can go through for a charged scalar field.展开更多
Organic-inorganic perovskite solar cells (PSCs) have attracted intense attention in the last few years due to the phenomenal increase in power conversion efficiency (PCE), but their low stability has greatly hinde...Organic-inorganic perovskite solar cells (PSCs) have attracted intense attention in the last few years due to the phenomenal increase in power conversion efficiency (PCE), but their low stability has greatly hindered their practical application. By removing unstable hole transport materials (HTM), the device stability of HTM-free PSCs has been greatly improved. However, the PCE has largely lagged behind those of HTM-based PSCs. We contend that deposition of high-quality perovskite into a thick scaffold is the key to achieving high-performance, HTM-free PSCs. Indeed, a few deposition methods have been used to successfully deposit a high-quality perovskite layer into a relatively thick TiO2 scaffold, hence producing PSCs with relatively high PCEs. In this review, we will introduce the basic working principle of HTM-free PSCs and analyze the important role of thick TiO2 scaffold. Most importantly, the problems of the conventional perovskite deposition methods in thick TiO2 scaffold will be examined and some recent successful deposition methods will be surveyed. Finally, we will draw conclusions and highlight some promising research directions for HTM-free PSCs.展开更多
The linear stability of equilibria of charged particles moving near a compact object with a dipole magnetic field and a pseudo-Newtonian potential is analyzed detalledly. An optimal fourth-order force gradient symplec...The linear stability of equilibria of charged particles moving near a compact object with a dipole magnetic field and a pseudo-Newtonian potential is analyzed detalledly. An optimal fourth-order force gradient symplectic method, as a global symplectic integrator that can simultaneously solve both the equations of motion and the variational equations, is used to calculate fast Lyapunov indicators. In this way, dynamical structures are described, and parameter domains for causing chaos are found.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51777097,51577093)。
文摘Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nanopores are found in the anodic films formed in the electrolytes after high-temperature storage(HTS)at 130°C for 240 h.A comparison of the voltage-time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes.FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures.Combining the electronic current theory and oxygen bubble mold effect,the change in electrolyte composition could increase the electronic current in the anodizing process.The electronic current decreases the formation efficiency of anodic oxide films,and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films.The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.
基金Youth Scientific Foundation of Sichuan Education Department,国家自然科学基金
文摘Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
基金The project supported by National Natural Science Foundation of China under Grant No. 10347008
文摘Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon and the cosmic horizon are related to Bekenstein-Hawking entropy if we take the energy conservation into consideration, and the true radiate spectrum is not precisely thermal.
基金supported by the program of China Polar Environment Investigation and Assessment(2011-2015)the National Nature Science Foundation of China (No. 41076132)
文摘Influencing factors, and variations and trends of Antarctic ozone hole in recent decades are analyzed, and sudden change processes of ozone at Zhongshan station and the effect of atmospheric dynamic processes on ozone changes are also discussed by using the satellite ozone data and the ground-measured ozone data at two Antarctic stations as well as the NCEP/NCAR reanalysis data. The results show that equivalent effective stratospheric chlorine (EESC) and stratospheric temperature are two important factors influencing the ozone hole. The column ozone at Zhongshan and Syowa stations is significantly related with EESC and stratospheric temperature, which means that even though the two stations are both located on the edge of the ozone hole, EESC and stratospheric temperature still played a very important role in column ozone changes, and mean while verifies that EESC is applicable on the coast of east Antarctic continent. Decadal changes in EESC are similar with those of the ozone hole, and inter-annual variations of ozone are closely related with stratospheric temperature. Based on the relation of EESC and ozone hole size, it can be projected that the ozone hole size will gradually reduce to the 1980's level from 2010 to around 2070. Of course there might exist many uncertainties in the projection, which therefore needs to be further studied.
基金supported by National Science Foundation of China under Grant No. 10773008Sichuan Province Foundation for Fundamental Research under Grand No. 05JY029-092
文摘Considering the self-gravitation and energy conservation as well as charge conservation, we extend Medved and Vagenas's quantum tunneling method to the global monopole charged black hole, and give a correction to Hawking radiation of a charged particle.
基金The project supported in part by National Natural Science Foundation of China under Grant No.90103019+2 种基金the Doctoral Programme Foundation of Institute of Higher Educationthe Ministry of Education of China under Grant No.2000000147
文摘Si-Jie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expected number of particles in any wave packet belonging to spontaneously produced from the state , which confirms the traditional belief that extremal black holes do not radiate particles. Making some modifications, we demonstrate that the analysis can go through for a charged scalar field.
文摘Organic-inorganic perovskite solar cells (PSCs) have attracted intense attention in the last few years due to the phenomenal increase in power conversion efficiency (PCE), but their low stability has greatly hindered their practical application. By removing unstable hole transport materials (HTM), the device stability of HTM-free PSCs has been greatly improved. However, the PCE has largely lagged behind those of HTM-based PSCs. We contend that deposition of high-quality perovskite into a thick scaffold is the key to achieving high-performance, HTM-free PSCs. Indeed, a few deposition methods have been used to successfully deposit a high-quality perovskite layer into a relatively thick TiO2 scaffold, hence producing PSCs with relatively high PCEs. In this review, we will introduce the basic working principle of HTM-free PSCs and analyze the important role of thick TiO2 scaffold. Most importantly, the problems of the conventional perovskite deposition methods in thick TiO2 scaffold will be examined and some recent successful deposition methods will be surveyed. Finally, we will draw conclusions and highlight some promising research directions for HTM-free PSCs.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11173012 and 11178002
文摘The linear stability of equilibria of charged particles moving near a compact object with a dipole magnetic field and a pseudo-Newtonian potential is analyzed detalledly. An optimal fourth-order force gradient symplectic method, as a global symplectic integrator that can simultaneously solve both the equations of motion and the variational equations, is used to calculate fast Lyapunov indicators. In this way, dynamical structures are described, and parameter domains for causing chaos are found.