The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the ...The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the welded joint were investigated systematically. The results indicated that the welded seam was of austenite dendrite crystal structure and no obvious heat affected zone(HAZ) was observed. A number of precipitated δ phases with homogeneous distribution were observed in the interdendritic region of the weld fusion zone. The abnormal phenomenon observed in the weld fusion zone of GH625, i.e., higher hardness and larger grain size compared with the base metal, may be attributed to the precipitated δ phase in the weld fusion zone. The higher tensile strength in the base metal was mainly attributed to the presence of more contents of fine grains and twin boundaries, while the lower elongation in the welded joint was mainly owing to the precipitated δ phase.展开更多
The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spine...The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spinel type(Fe, Cr)3O4 oxides. Compared with the oxide film on HR3 C steel, thinner oxide films with smaller size of oxide particles were realized on Al0.15 CoCrFeNi and Al0.4CoCrFeNi, indicating a superior oxidation resistance of Al0.15 CoCrFeNi and Al0.4CoCrFeNi to HR3 C steel. Electrochemical test results reveal that surface oxide films greatly affect the electrochemical corrosion behavior of the oxidized alloys in 3.5% Na Cl solution. The relatively high corrosion resistance of oxidized Al0.15 CoCrFeNi and HR3 C is attributed to the formation of thick and multi-layer oxides.展开更多
The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. ...The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. Deep drawing and stretch formability were also tested through limiting drawing ratio (LDR) and limiting dome height (LDH) tests. Finally, post forming mechanical property testing was conducted to investigate the effects of exposure to warm forming temperatures on the mechanical properties. Results show that deep drawing and stretch formability of AA7075 can be significantly improved when the blank is heated to 140-220 °C. At temperature over 260 °C, formability and post forming mechanical properties begin to decrease due to the effect of the heating and forming processes on the material's temper.展开更多
The oxidation performance and tribological properties of the anodized Ti45Al8.5Nb were investigated.Anodization was performed in ethylene glycol containing 0.15 mol/L NH_(4)F.Results showed that the anodized Ti45Al8.5...The oxidation performance and tribological properties of the anodized Ti45Al8.5Nb were investigated.Anodization was performed in ethylene glycol containing 0.15 mol/L NH_(4)F.Results showed that the anodized Ti45Al8.5Nb alloy exhibited good resistance against oxidation.After 100 h oxidation at 1000℃,the mass gain of the anodized Ti45Al8.5Nb alloy was only 0.37 mg/cm^(2).This is attributed to the generation of protective oxide scale.On the other hand,the hardness and elastic modulus of the anodized Ti45Al8.5Nb alloy decreased and then increased with the prolonging of thermal exposure due to the generation of the Al_(2)O_(3)-enriched outermost oxide layer.展开更多
文摘The tungsten inert gas welding(TIG) technique was employed to weld the nickel-based wrought superalloy GH625, and the microstructures, element distribution, grain boundary character and mechanical properties of the welded joint were investigated systematically. The results indicated that the welded seam was of austenite dendrite crystal structure and no obvious heat affected zone(HAZ) was observed. A number of precipitated δ phases with homogeneous distribution were observed in the interdendritic region of the weld fusion zone. The abnormal phenomenon observed in the weld fusion zone of GH625, i.e., higher hardness and larger grain size compared with the base metal, may be attributed to the precipitated δ phase in the weld fusion zone. The higher tensile strength in the base metal was mainly attributed to the presence of more contents of fine grains and twin boundaries, while the lower elongation in the welded joint was mainly owing to the precipitated δ phase.
基金Projects(51134013,51171037,51101024)supported by the National Natural Science Foundation of China
文摘The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spinel type(Fe, Cr)3O4 oxides. Compared with the oxide film on HR3 C steel, thinner oxide films with smaller size of oxide particles were realized on Al0.15 CoCrFeNi and Al0.4CoCrFeNi, indicating a superior oxidation resistance of Al0.15 CoCrFeNi and Al0.4CoCrFeNi to HR3 C steel. Electrochemical test results reveal that surface oxide films greatly affect the electrochemical corrosion behavior of the oxidized alloys in 3.5% Na Cl solution. The relatively high corrosion resistance of oxidized Al0.15 CoCrFeNi and HR3 C is attributed to the formation of thick and multi-layer oxides.
文摘The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. Deep drawing and stretch formability were also tested through limiting drawing ratio (LDR) and limiting dome height (LDH) tests. Finally, post forming mechanical property testing was conducted to investigate the effects of exposure to warm forming temperatures on the mechanical properties. Results show that deep drawing and stretch formability of AA7075 can be significantly improved when the blank is heated to 140-220 °C. At temperature over 260 °C, formability and post forming mechanical properties begin to decrease due to the effect of the heating and forming processes on the material's temper.
基金financial supports from the National Natural Science Foundation of China (No. 51971205)the Guangdong Basic and Applied Basic Research Foundation, China (No. 2021B1515020056)the Shenzhen Fundamental Research Program, China (No. JCYJ20190807154005593)。
文摘The oxidation performance and tribological properties of the anodized Ti45Al8.5Nb were investigated.Anodization was performed in ethylene glycol containing 0.15 mol/L NH_(4)F.Results showed that the anodized Ti45Al8.5Nb alloy exhibited good resistance against oxidation.After 100 h oxidation at 1000℃,the mass gain of the anodized Ti45Al8.5Nb alloy was only 0.37 mg/cm^(2).This is attributed to the generation of protective oxide scale.On the other hand,the hardness and elastic modulus of the anodized Ti45Al8.5Nb alloy decreased and then increased with the prolonging of thermal exposure due to the generation of the Al_(2)O_(3)-enriched outermost oxide layer.