As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese N...As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese National Antarctic Research Expedition,2007/08),the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station,East Antarctica.Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the "Chinese Wall",with the thickest ice being 3444 m,and the thinnest ice 1255 m.The average bedrock elevation is 1722 m,while the minimum is just 604 m.Compared with the northern side of the ice divide,the ice thickness is a little greater and the subglacial topography lower on the southern side,which is also characterized by four deep valleys.We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area,subglacial lakes,or water bodies along the "Chinese Wall".Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the "Chinese Wall" are consistent with our results,but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely.The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this "inaccessible" region.These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM's geological and deep ice core drilling sites in the Dome A region.展开更多
Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is ...Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is proposed. The system mainly consists of three functional modules, including active quenching circuit( AQC), time-to-digital converter( TDC) circuit and other timing controller circuit. Each AQC and TDC circuit together constitutes the pixel circuit. Under the cooperation with other modules, the current signal generated by the GM-APD sensor is detected by the AQC, and the photon time-of-flight( TOF) is measured and converted to a digital signal output to achieve a better noise suppression and a higher detection sensitivity by the TDC. The ROIC circuit is fabricated by the CSMC 0. 5 μm standard CMOS technology. The array size is 8 × 8, and the center distance of two adjacent cells is 100μm. The measurement results of the chip showthat the performance of the circuit is good, and the chip can achieve 1 ns time resolution with a 250 MHz reference clock, and the circuit can be used in the array structure of the infrared detection system or focal plane array( FPA).展开更多
During the 21st Chinese National Antarctic Research Expedition(CHINARE 21,2004/05),a radar dataset was collected using a ground-based radar system,along a traverse line from Zhongshan Station to DT401(130 km from the ...During the 21st Chinese National Antarctic Research Expedition(CHINARE 21,2004/05),a radar dataset was collected using a ground-based radar system,along a traverse line from Zhongshan Station to DT401(130 km from the Kunlun station).The internal layering structure and subglacial conditions were revealed along the radar profi le.Continuous internal layers,disturbed layers,and echo-free zones(EFZs)along the profi le were identifi ed and classifi ed,and the spatial distribution was presented.Based on recent surface ice velocity data,we found that the internal layers at a depth of 200-300 m in the upper ice sheet are continuous,smooth,and nearly parallel to the ice surface topography.In addition,the thick band of continuous layers changes little with increasing latitude.At depths below 300 m,the geometric structure of the internal layers and the vertical width of the EFZ band are infl uenced by the surface ice velocity and bed topography.The relatively high disturbance,layer discontinuity,and larger EFZ band width directly correspond to a higher surface ice velocity and a sharper bed topography.In particular,we found that at a depth of 650-950 km,the Lambert Glacier Rift in the Gamburtsev Mountains has a higher ice fl ow;moreover,the revealed internal layers are disturbed or broken,and the maximal vertical width of the EFZ band most likely exceeds 2000 m.展开更多
In this letter we present the results regarding the electrical and optical characterization of Geiger mode silicon avalanche photodiodes(GMAP) fabricated by silicon standard planar technology. Low dark count rates,neg...In this letter we present the results regarding the electrical and optical characterization of Geiger mode silicon avalanche photodiodes(GMAP) fabricated by silicon standard planar technology. Low dark count rates,negligible afterpulsing effects,good timing resolution and high quantum detection efficiency in all the visible range have been measured. The very good electro-optical performances of our photodiodes make them attractive for the fabrication of arrays with a large number of GMAP to be used both in the commercial and the scientific fields,as telecommunications and nuclear medical imaging.展开更多
In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared ban...In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared band. A cloud detection method over ice-snow covered areas in Antarctica is presented. On account of different texture features of cloud and ice-snow areas, five texture features are extracted based on GLCM. Nonlinear SVM is then used to obtain the optimal classification hyperplane from training data. The experiment results indicate that this algorithm performs well in cloud detection in Antarctica, especially for thin cirrus detection. Furthermore, when images are resampled to a quarter or 1/16 of the full size, cloud percentages are still at the same level, while the processing time decreases exponentially.展开更多
The exchanges of NOx between snow and air have significant impact on the atmospheric components and photochemical processes in the overlying boundary layer. Such exchanges increase the oxidizing capacity of the atmosp...The exchanges of NOx between snow and air have significant impact on the atmospheric components and photochemical processes in the overlying boundary layer. Such exchanges increase the oxidizing capacity of the atmosphere and may have a crucial impact on the air signals that are retrieved from ice cores. In the recent years, sunlit snow and ice have been demonstrated to be important NOx sources in the polar atmospheric boundary layer. This paper makes a thorough review on the release of NOx from snow and ice, including field observations and experimental evidences, release mechanisms and influential parameters that affect such a release process, polar NOx concentrations and fluxes, and environmental impacts of the chemical processes of NOx in the polar atmospheric boundary layer. In the Tibetan Plateau, the released NOx observed recently in the sunlit snow/ice-cover is 1-order magnitude more than that in polar regions, but further scientific research is still needed to reveal its impact on the atmospheric oxidizing capacity.展开更多
A dipole pattern of summer precipitation over the mid-high latitudes of Asia, which is characterized by opposing summer precipitation variations between the Mongolian and Northeast China(MNC) region and the West Siber...A dipole pattern of summer precipitation over the mid-high latitudes of Asia, which is characterized by opposing summer precipitation variations between the Mongolian and Northeast China(MNC) region and the West Siberian Plain(WSP), is found to be clear and stable on both interdecadal and interannual scales during 1981–2011. Spring snow cover anomalies over a small region within the WSP and the Heilongjiang River(HR) region are closely related to the variation of this dipole mode during the subsequent summer, and they can therefore be considered as forecasting factors. Our statistical results imply a potential process explaining the relationship between the spring snow anomalies and the summer rainfall dipole. Corresponding to the snow anomalies, Rossby waves propagate along a path from the WSP region, via the Mongolian Plateau, to the Stanovoy Range during summer. At the same time, Rossby-wave energy divergences and convergences along this path maintain and reinforce an anomalous cyclone and anticyclone pairing over the Asian continent, which is significantly linked to opposite summer precipitation anomalies between the MNC and WSP regions. Numerical experiments are needed to further confirm the above conjecture and demonstrate the detailed physical mechanisms linking the spring snow cover anomalies and summer precipitation dipole.展开更多
This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. T...This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. To achieve this, time domain IP (induced polarization) and SP (self-potential) methods were adopted using VES (vertical electrical sounding) technique with 49 stations sounded. The result of the interpreted and analyzed measured data shows that the area is underlain by two to five subsurface layers. These layers are top soil, laterite, weathered basement complex rocks, fractured basement complex rocks and fresh basement complex rocks. The aquiferous zone of the study area occurs in the weathered and fractured basements and its thickness ranges from 1.44 m to 70.157 m while the overburden thickness lies between 1.6 m and 72.104 m. SP values were plotted against depths of investigation in order to identify areas with greater depth of flow in the study area. From the analysis of the overburden thickness, aquifer thickness and SP values, the most favorable regions for groundwater exploitation were found around VES 6, 11, 13, 19, 26, 38, 44 and 48. The investigation also provides information about the subsurface condition with regards to engineering construction and safe place for refuse dumping in order to avoid groundwater contamination.展开更多
The aim of the research was to investigate black colored steel-tinplate use for absorber and covering material of the collector and compare the efficiency of three types of air heating collectors. This heated air can ...The aim of the research was to investigate black colored steel-tinplate use for absorber and covering material of the collector and compare the efficiency of three types of air heating collectors. This heated air can be exploited for drying of agricultural products, room ventilation and room heating etc. 0.1 × 0.5 × 1.0 meter long FPC (fiat-plate collector) with a sun following platform was built. Air velocity at the experiments was v = 0.9 m/s. Collectors of insulated and un-insulated surfaces with steel-tinplate absorber as a covering material warmed the ambient air up to 10-12 and 5-6 degrees correspondingly (at irradiance 800 W/m^2). This difference indicates the great importance of insulating the collector body. It can be explained with intense heat exchange between the absorber and ambient air which reduces the efficiency of the collector. There was good correlation with irradiance and the air heating degree. The investigations showed that more effective FPC had the collector with absorber tinplate in the middle of the collector body. At favorable weather conditions the heating degree of the ambient air at the outlet reaches 6-8 degrees more that at the outlet of the insulated collector covered by steel-tinplate.展开更多
It is important to quantify mass variations in the Antarctic ice sheet hybrid filtering scheme employing a combination of the decorrelated to study the global sea-level rise and climate change. A filter P3M6 and 300 k...It is important to quantify mass variations in the Antarctic ice sheet hybrid filtering scheme employing a combination of the decorrelated to study the global sea-level rise and climate change. A filter P3M6 and 300 km Fan filter was used, and the sur- face mass variations over the Antarctic are recovered from GRACE CSR RL04 monthly gravity field models from August 2002 to June 2010. After deduction of leakage errors using the GLDAS hydrological model and postglacial rebound effects using the glacial isostatic adjustment model IJ05, the variations in the ice sheet mass are obtained. The results reveal that the rate of melting of the Antarctic ice sheet is 80.0 Gt/a and increasing and contributes 0.22 mm/a to the global sea-level rise; the mass loss rate is 78.3 Gt/a in the West Antarctic and 1.6 Gt/a in the East Antarctic. The average mass loss rate increases from 39.3 Gt/a for the period 2002-2005 to 104.2 Gt/a for the period 2006-2010, and its corresponding contribution to the global sea-level rise increases from 0.11 to 0.29 mm/a, which indicates accelerated ice mass loss over the Antarctic since 2006. Moreover, the mass accumulation rates for Enderby Land and Wilkes Land along the coast of East Antarctica decrease for the period 2006-2008 but increase evidently after 2009.展开更多
Dome A (Kunlun Station) is considered a likely place for finding an ice core record reaching back to one million years. The internal isochronous layering of the Antarctic Ice Sheet, revealed by ice radar, is a prerequ...Dome A (Kunlun Station) is considered a likely place for finding an ice core record reaching back to one million years. The internal isochronous layering of the Antarctic Ice Sheet, revealed by ice radar, is a prerequisite for selecting sites for deep ice core drilling that can be used for studying the paleoclimatic record. In 2004/2005, during the 21st Chinese National Antarctic Research Expedition (CHINARE 21), a 200-km long, continuous radar profile was obtained across Dome A. The internal layers along the profile were derived from the stratigraphy detected by the radar. The morphology of the isochronous layers shows that: (1) The internal layers in the shallow ice sheet (0-500 m) are generally flat, with no more than 50 m of layer intervals, and have typical synclines and anticlines in some localized regions. (2) At 500-2000 m below the surface of the ice sheet, the layers appear as 'bright layers', and the width of the layer intervals expands to 50-100 m. (3) When the basal topographic wavelengths are approximate to the thickness of the ice (3 km), the traced internal layers, with localized bumps or concave folds, are asymptotic parallel to the subglacial topography. For the longer topographic wavelengths (~20 km) wider than the thickness of the ice, the layers do not rise and fall with the basal topography. The internal layers surrounding some mountain peaks representing the most extreme variation in the terrain are sharply disturbed by the subglacial topography. (4) Layer discontinuity and fracture were detected in the basal ice sheet. Finally, by combining this new information with that derived from existing data regarding ice thickness, we were able to select three potential sites for reconstructing the age-depth relationship of the ice core.展开更多
基金supported by National Basic Research Program of China(Grant Nos.2013CBA01804 and 2012CB957702)the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs(Grant No.CHINARE-02-02)the National Science Foundation of China(Grant No.41101071)
文摘As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese National Antarctic Research Expedition,2007/08),the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station,East Antarctica.Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the "Chinese Wall",with the thickest ice being 3444 m,and the thinnest ice 1255 m.The average bedrock elevation is 1722 m,while the minimum is just 604 m.Compared with the northern side of the ice divide,the ice thickness is a little greater and the subglacial topography lower on the southern side,which is also characterized by four deep valleys.We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area,subglacial lakes,or water bodies along the "Chinese Wall".Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the "Chinese Wall" are consistent with our results,but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely.The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this "inaccessible" region.These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM's geological and deep ice core drilling sites in the Dome A region.
基金The Natural Science Foundation of Jiangsu Province(No.BK2012559)Qing Lan Project of Jiangsu Province
文摘Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is proposed. The system mainly consists of three functional modules, including active quenching circuit( AQC), time-to-digital converter( TDC) circuit and other timing controller circuit. Each AQC and TDC circuit together constitutes the pixel circuit. Under the cooperation with other modules, the current signal generated by the GM-APD sensor is detected by the AQC, and the photon time-of-flight( TOF) is measured and converted to a digital signal output to achieve a better noise suppression and a higher detection sensitivity by the TDC. The ROIC circuit is fabricated by the CSMC 0. 5 μm standard CMOS technology. The array size is 8 × 8, and the center distance of two adjacent cells is 100μm. The measurement results of the chip showthat the performance of the circuit is good, and the chip can achieve 1 ns time resolution with a 250 MHz reference clock, and the circuit can be used in the array structure of the infrared detection system or focal plane array( FPA).
基金This research is supported by the Funded by the Natural Science Foundation of China(41876230,41376192)the Major National Scientifi c Research Project on Global Changes(973 Project)(2013CBA01804)Comprehensive Investigation&Assessment Programs(CHINARE2017-01-01).
文摘During the 21st Chinese National Antarctic Research Expedition(CHINARE 21,2004/05),a radar dataset was collected using a ground-based radar system,along a traverse line from Zhongshan Station to DT401(130 km from the Kunlun station).The internal layering structure and subglacial conditions were revealed along the radar profi le.Continuous internal layers,disturbed layers,and echo-free zones(EFZs)along the profi le were identifi ed and classifi ed,and the spatial distribution was presented.Based on recent surface ice velocity data,we found that the internal layers at a depth of 200-300 m in the upper ice sheet are continuous,smooth,and nearly parallel to the ice surface topography.In addition,the thick band of continuous layers changes little with increasing latitude.At depths below 300 m,the geometric structure of the internal layers and the vertical width of the EFZ band are infl uenced by the surface ice velocity and bed topography.The relatively high disturbance,layer discontinuity,and larger EFZ band width directly correspond to a higher surface ice velocity and a sharper bed topography.In particular,we found that at a depth of 650-950 km,the Lambert Glacier Rift in the Gamburtsev Mountains has a higher ice fl ow;moreover,the revealed internal layers are disturbed or broken,and the maximal vertical width of the EFZ band most likely exceeds 2000 m.
文摘In this letter we present the results regarding the electrical and optical characterization of Geiger mode silicon avalanche photodiodes(GMAP) fabricated by silicon standard planar technology. Low dark count rates,negligible afterpulsing effects,good timing resolution and high quantum detection efficiency in all the visible range have been measured. The very good electro-optical performances of our photodiodes make them attractive for the fabrication of arrays with a large number of GMAP to be used both in the commercial and the scientific fields,as telecommunications and nuclear medical imaging.
基金Supported by the Antarctic Geography Information Acquisition and Environmental Change Research of China (No.14601402024-04-06).
文摘In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared band. A cloud detection method over ice-snow covered areas in Antarctica is presented. On account of different texture features of cloud and ice-snow areas, five texture features are extracted based on GLCM. Nonlinear SVM is then used to obtain the optimal classification hyperplane from training data. The experiment results indicate that this algorithm performs well in cloud detection in Antarctica, especially for thin cirrus detection. Furthermore, when images are resampled to a quarter or 1/16 of the full size, cloud percentages are still at the same level, while the processing time decreases exponentially.
基金supported by the Fund of Polar Scientific Research(No.20080216) of State Ocean Administration, Chinaby Chinese Natural Science Foundation(No. 20407001,No.40701170)
文摘The exchanges of NOx between snow and air have significant impact on the atmospheric components and photochemical processes in the overlying boundary layer. Such exchanges increase the oxidizing capacity of the atmosphere and may have a crucial impact on the air signals that are retrieved from ice cores. In the recent years, sunlit snow and ice have been demonstrated to be important NOx sources in the polar atmospheric boundary layer. This paper makes a thorough review on the release of NOx from snow and ice, including field observations and experimental evidences, release mechanisms and influential parameters that affect such a release process, polar NOx concentrations and fluxes, and environmental impacts of the chemical processes of NOx in the polar atmospheric boundary layer. In the Tibetan Plateau, the released NOx observed recently in the sunlit snow/ice-cover is 1-order magnitude more than that in polar regions, but further scientific research is still needed to reveal its impact on the atmospheric oxidizing capacity.
基金the joint support of the National Natural Science Foundation of China (Grant No. 41375090)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2013Z002)the International Cooperation and Exchange of the Ministry of Science and Technology of China (Grant No. 2009DFA21430)
文摘A dipole pattern of summer precipitation over the mid-high latitudes of Asia, which is characterized by opposing summer precipitation variations between the Mongolian and Northeast China(MNC) region and the West Siberian Plain(WSP), is found to be clear and stable on both interdecadal and interannual scales during 1981–2011. Spring snow cover anomalies over a small region within the WSP and the Heilongjiang River(HR) region are closely related to the variation of this dipole mode during the subsequent summer, and they can therefore be considered as forecasting factors. Our statistical results imply a potential process explaining the relationship between the spring snow anomalies and the summer rainfall dipole. Corresponding to the snow anomalies, Rossby waves propagate along a path from the WSP region, via the Mongolian Plateau, to the Stanovoy Range during summer. At the same time, Rossby-wave energy divergences and convergences along this path maintain and reinforce an anomalous cyclone and anticyclone pairing over the Asian continent, which is significantly linked to opposite summer precipitation anomalies between the MNC and WSP regions. Numerical experiments are needed to further confirm the above conjecture and demonstrate the detailed physical mechanisms linking the spring snow cover anomalies and summer precipitation dipole.
文摘This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. To achieve this, time domain IP (induced polarization) and SP (self-potential) methods were adopted using VES (vertical electrical sounding) technique with 49 stations sounded. The result of the interpreted and analyzed measured data shows that the area is underlain by two to five subsurface layers. These layers are top soil, laterite, weathered basement complex rocks, fractured basement complex rocks and fresh basement complex rocks. The aquiferous zone of the study area occurs in the weathered and fractured basements and its thickness ranges from 1.44 m to 70.157 m while the overburden thickness lies between 1.6 m and 72.104 m. SP values were plotted against depths of investigation in order to identify areas with greater depth of flow in the study area. From the analysis of the overburden thickness, aquifer thickness and SP values, the most favorable regions for groundwater exploitation were found around VES 6, 11, 13, 19, 26, 38, 44 and 48. The investigation also provides information about the subsurface condition with regards to engineering construction and safe place for refuse dumping in order to avoid groundwater contamination.
文摘The aim of the research was to investigate black colored steel-tinplate use for absorber and covering material of the collector and compare the efficiency of three types of air heating collectors. This heated air can be exploited for drying of agricultural products, room ventilation and room heating etc. 0.1 × 0.5 × 1.0 meter long FPC (fiat-plate collector) with a sun following platform was built. Air velocity at the experiments was v = 0.9 m/s. Collectors of insulated and un-insulated surfaces with steel-tinplate absorber as a covering material warmed the ambient air up to 10-12 and 5-6 degrees correspondingly (at irradiance 800 W/m^2). This difference indicates the great importance of insulating the collector body. It can be explained with intense heat exchange between the absorber and ambient air which reduces the efficiency of the collector. There was good correlation with irradiance and the air heating degree. The investigations showed that more effective FPC had the collector with absorber tinplate in the middle of the collector body. At favorable weather conditions the heating degree of the ambient air at the outlet reaches 6-8 degrees more that at the outlet of the insulated collector covered by steel-tinplate.
基金supported by the National Basic Research Program of China (Grant No. 2007CB714405)the National Natural Science Foundation of China (Grant No. 40874002)the Program for New Century Excellent Talents in University (Grant No. NCET-07-0635)
文摘It is important to quantify mass variations in the Antarctic ice sheet hybrid filtering scheme employing a combination of the decorrelated to study the global sea-level rise and climate change. A filter P3M6 and 300 km Fan filter was used, and the sur- face mass variations over the Antarctic are recovered from GRACE CSR RL04 monthly gravity field models from August 2002 to June 2010. After deduction of leakage errors using the GLDAS hydrological model and postglacial rebound effects using the glacial isostatic adjustment model IJ05, the variations in the ice sheet mass are obtained. The results reveal that the rate of melting of the Antarctic ice sheet is 80.0 Gt/a and increasing and contributes 0.22 mm/a to the global sea-level rise; the mass loss rate is 78.3 Gt/a in the West Antarctic and 1.6 Gt/a in the East Antarctic. The average mass loss rate increases from 39.3 Gt/a for the period 2002-2005 to 104.2 Gt/a for the period 2006-2010, and its corresponding contribution to the global sea-level rise increases from 0.11 to 0.29 mm/a, which indicates accelerated ice mass loss over the Antarctic since 2006. Moreover, the mass accumulation rates for Enderby Land and Wilkes Land along the coast of East Antarctica decrease for the period 2006-2008 but increase evidently after 2009.
基金supported by National Natural Science Foundation of China (Grant Nos. 40906101 and 40476005)National Basic Research Program of China (Grant No. 2006BAB18B01)+1 种基金IPY Chinese Programme (Grant No. IPY2008-P050400101)Polar Strategy Research Foundation in China (Grant No. 20070215)
文摘Dome A (Kunlun Station) is considered a likely place for finding an ice core record reaching back to one million years. The internal isochronous layering of the Antarctic Ice Sheet, revealed by ice radar, is a prerequisite for selecting sites for deep ice core drilling that can be used for studying the paleoclimatic record. In 2004/2005, during the 21st Chinese National Antarctic Research Expedition (CHINARE 21), a 200-km long, continuous radar profile was obtained across Dome A. The internal layers along the profile were derived from the stratigraphy detected by the radar. The morphology of the isochronous layers shows that: (1) The internal layers in the shallow ice sheet (0-500 m) are generally flat, with no more than 50 m of layer intervals, and have typical synclines and anticlines in some localized regions. (2) At 500-2000 m below the surface of the ice sheet, the layers appear as 'bright layers', and the width of the layer intervals expands to 50-100 m. (3) When the basal topographic wavelengths are approximate to the thickness of the ice (3 km), the traced internal layers, with localized bumps or concave folds, are asymptotic parallel to the subglacial topography. For the longer topographic wavelengths (~20 km) wider than the thickness of the ice, the layers do not rise and fall with the basal topography. The internal layers surrounding some mountain peaks representing the most extreme variation in the terrain are sharply disturbed by the subglacial topography. (4) Layer discontinuity and fracture were detected in the basal ice sheet. Finally, by combining this new information with that derived from existing data regarding ice thickness, we were able to select three potential sites for reconstructing the age-depth relationship of the ice core.