A number of recent studies have examined trends in extreme temperature indices using a linear regression model based on ordinary least-squares. In this study, quantile regression was, for the first time, applied to ex...A number of recent studies have examined trends in extreme temperature indices using a linear regression model based on ordinary least-squares. In this study, quantile regression was, for the first time, applied to examine the trends not only in the mean but also in all parts of the distribution of several extreme temperature indices in China for the period 1960–2008. For China as a whole, the slopes in almost all the quantiles of the distribution showed a notable increase in the numbers of warm days and warm nights, and a significant decrease in the number of cool nights. These changes became much faster as the quantile increased. However, although the number of cool days exhibited a significant decrease in the mean trend estimated by classical linear regression, there was no obvious trend in the upper and lower quantiles. This finding suggests that examining the trends in different parts of the distribution of the time-series is of great importance. The spatial distribution of the trend in the 90 th quantile indicated that there was a pronounced increase in the numbers of warm days and warm nights, and a decrease in the number of cool nights for most of China, but especially in the northern and western parts of China, while there was no significant change for the number of cool days at almost all the stations.展开更多
Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(C...Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(CIs)are constructed to represent the uncertainty of the estimates.Since the accuracy of CIs depends on the asymptotic normality of the data and is questionable with limited observations in practice,a Bayesian highest posterior density(HPD)interval,bootstrap percentile interval,and profile likelihood(PL)interval have been introduced to analyze the uncertainty that does not depend on the normality assumption.However,comparison studies to investigate their performances in terms of the accuracy and uncertainty of the estimates are scarce.In addition,the strengths,weakness,and conditions necessary for performing each method also must be investigated.Accordingly,in this study,test experiments with simulations from varying parent distributions and different sample sizes were conducted.Then,applications to the annual maximum rainfall(AMR)time series data in South Korea were performed.Five districts with 38-year(1973–2010)AMR observations were fitted by the three aforementioned methods in the application.From both the experimental and application results,the Bayesian method is found to provide the lowest uncertainty of the design level while the PL estimates generally have the highest accuracy but also the largest uncertainty.The bootstrap estimates are usually inferior to the other two methods,but can perform adequately when the distribution model is not heavy-tailed and the sample size is large.The distribution tail behavior and the sample size are clearly found to affect the estimation accuracy and uncertainty.This study presents a comparative result,which can help researchers make decisions in the context of assessing extreme rainfall uncertainties.展开更多
基金sponsored by the National Basic Research Program of China (973 Program, Grant No. 2012CB956203)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-EW-202)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05090100)
文摘A number of recent studies have examined trends in extreme temperature indices using a linear regression model based on ordinary least-squares. In this study, quantile regression was, for the first time, applied to examine the trends not only in the mean but also in all parts of the distribution of several extreme temperature indices in China for the period 1960–2008. For China as a whole, the slopes in almost all the quantiles of the distribution showed a notable increase in the numbers of warm days and warm nights, and a significant decrease in the number of cool nights. These changes became much faster as the quantile increased. However, although the number of cool days exhibited a significant decrease in the mean trend estimated by classical linear regression, there was no obvious trend in the upper and lower quantiles. This finding suggests that examining the trends in different parts of the distribution of the time-series is of great importance. The spatial distribution of the trend in the 90 th quantile indicated that there was a pronounced increase in the numbers of warm days and warm nights, and a decrease in the number of cool nights for most of China, but especially in the northern and western parts of China, while there was no significant change for the number of cool days at almost all the stations.
基金supported by Hanyang University(Grant No.HY-2014)
文摘Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(CIs)are constructed to represent the uncertainty of the estimates.Since the accuracy of CIs depends on the asymptotic normality of the data and is questionable with limited observations in practice,a Bayesian highest posterior density(HPD)interval,bootstrap percentile interval,and profile likelihood(PL)interval have been introduced to analyze the uncertainty that does not depend on the normality assumption.However,comparison studies to investigate their performances in terms of the accuracy and uncertainty of the estimates are scarce.In addition,the strengths,weakness,and conditions necessary for performing each method also must be investigated.Accordingly,in this study,test experiments with simulations from varying parent distributions and different sample sizes were conducted.Then,applications to the annual maximum rainfall(AMR)time series data in South Korea were performed.Five districts with 38-year(1973–2010)AMR observations were fitted by the three aforementioned methods in the application.From both the experimental and application results,the Bayesian method is found to provide the lowest uncertainty of the design level while the PL estimates generally have the highest accuracy but also the largest uncertainty.The bootstrap estimates are usually inferior to the other two methods,but can perform adequately when the distribution model is not heavy-tailed and the sample size is large.The distribution tail behavior and the sample size are clearly found to affect the estimation accuracy and uncertainty.This study presents a comparative result,which can help researchers make decisions in the context of assessing extreme rainfall uncertainties.