The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological...The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological stations uniformly distributed across Southwest China, which includes Yunnan, Guizhou, Chongqing, Sichuan and Tibet. It was found that temperatures in most of the region were warming and this was especially evident for areas at high elevation. The warming was mostly attributable to the increase in annual mean minimum temperature. The characteristics of high temperature/heat waves are increase in frequency, prolonged duration, and weakened intensity. Annual precipitation showed a weak decreasing trend and drier in the east and more rainfall in the west. The precipitation amount in flood season was declining markedly in the whole region; rainfall from extreme heavy precipitation did not change much, and the portion of annual precipitation contributed by extreme heavy precipitation had an increasing trend; annual non-rainy days and the longest consecutive non-rainy days were both increasing; the extreme drought had a decreasing trend since the 1990s; the autumn-rain days displayed a downward fluctuation with apparent periodicity and intermittency. The number of southwestern vortices was decreasing whereas the number of moving vortices increased.展开更多
Extreme climate events play an important role in studies of long-term climate change. As the Earth’s Third Pole, the Tibetan Plateau(TP) is sensitive to climate change and variation. In this study on the TP, the spat...Extreme climate events play an important role in studies of long-term climate change. As the Earth’s Third Pole, the Tibetan Plateau(TP) is sensitive to climate change and variation. In this study on the TP, the spatiotemporal changes in climate extreme indices(CEIs) are analyzed based on daily maximum and minimum surface air temperatures and precipitation at 98 meteorological stations, most with elevations of at least 4000 m above sea level, during 1960–2012. Fifteen temperature extreme indices(TEIs) and eight precipitation extreme indices(PEIs) were calculated. Then, their long-term change patterns, from spatial and temporal perspectives, were determined at regional, eco-regional and station levels. The entire TP region exhibits a significant warming trend, as reflected by the TEIs. The regional cold days and nights show decreasing trends at rates of-8.9 d(10 yr)-1(days per decade) and-17.3 d(10 yr)-1, respectively. The corresponding warm days and nights have increased by 7.6 d(10 yr)-1 and 12.5 d(10 yr)-1, respectively. At the station level, the majority of stations indicate statistically significant trends for all TEIs, but they show spatial heterogeneity. The eco-regional TEIs show patterns that are consistent with the entire TP. The growing season has become longer at a rate of 5.3 d(10 yr)^-1. The abrupt change points for CEIs were examined, and they were mainly distributed during the 1980 s and 1990 s. The PEIs on the TP exhibit clear fluctuations and increasing trends with small magnitudes. The annual total precipitation has increased by 2.8 mm(10 yr)^-1(not statistically significant). Most of the CEIs will maintain a persistent trend, as indicated by their Hurst exponents. The developing trends of the CEIs do not show a corresponding change with increasing altitude. In general, the warming trends demonstrate an asymmetric pattern reflected by the rapid increase in the warming trends of the cold TEIs, which are of greater magnitudes than those of the warm TEIs. This finding indicates a positive shift in the distribution of the daily minimum temperatures throughout the TP. Most of the PEIs show weak increasing trends, which are not statistically significant. This work aims to delineate a comprehensive picture of the extreme climate conditions over the TP that can enhance our understanding of its changing climate.展开更多
In this paper we consider extreme points and support points for compact subclasses of normalized biholomorphic mappings of the Euclidean unit ball Bn in Cn. We consider the class So(Bn) of biholomorphic mappings on ...In this paper we consider extreme points and support points for compact subclasses of normalized biholomorphic mappings of the Euclidean unit ball Bn in Cn. We consider the class So(Bn) of biholomorphic mappings on Bn which have parametric representation, i.e., they are the initial elements f(-, O) of a Loewner chain f(x,t) = etz + ... such that {e-tf(.,t)}t≥o is a normal family on Bn. We show that if f(.,O) is an extreme point (respectively a support point) of So(Bn), then e-t f(., t) is an extreme point of So(Bn) for t≥0 (respectively a support point of So(Bn) for t C [O, t0] and some to〉 0). This is a generalization to the n-dimensional case of work due to Pell. Also, we prove analogous results for mappings which belong to So(Bn) and which are bounded in the norm by a fixed constant. We relate the study of this class to reachable sets in control theory generalizing work of Roth. Finally we consider extreme points and support points for biholomorphic mappings of Bn generated by using extension operators that preserve Loewner chains.展开更多
基金supported by the special climate change in 2010 of the China Meteorological Administration (No. ccfs-2010)the National Natural Science Foundation of China (No. 41275097)
文摘The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological stations uniformly distributed across Southwest China, which includes Yunnan, Guizhou, Chongqing, Sichuan and Tibet. It was found that temperatures in most of the region were warming and this was especially evident for areas at high elevation. The warming was mostly attributable to the increase in annual mean minimum temperature. The characteristics of high temperature/heat waves are increase in frequency, prolonged duration, and weakened intensity. Annual precipitation showed a weak decreasing trend and drier in the east and more rainfall in the west. The precipitation amount in flood season was declining markedly in the whole region; rainfall from extreme heavy precipitation did not change much, and the portion of annual precipitation contributed by extreme heavy precipitation had an increasing trend; annual non-rainy days and the longest consecutive non-rainy days were both increasing; the extreme drought had a decreasing trend since the 1990s; the autumn-rain days displayed a downward fluctuation with apparent periodicity and intermittency. The number of southwestern vortices was decreasing whereas the number of moving vortices increased.
基金National Natural Science Foundation of China(41601478,41571391)National Key Research and Development Program of China(2018YFB0505301,2016YFC0500103)
文摘Extreme climate events play an important role in studies of long-term climate change. As the Earth’s Third Pole, the Tibetan Plateau(TP) is sensitive to climate change and variation. In this study on the TP, the spatiotemporal changes in climate extreme indices(CEIs) are analyzed based on daily maximum and minimum surface air temperatures and precipitation at 98 meteorological stations, most with elevations of at least 4000 m above sea level, during 1960–2012. Fifteen temperature extreme indices(TEIs) and eight precipitation extreme indices(PEIs) were calculated. Then, their long-term change patterns, from spatial and temporal perspectives, were determined at regional, eco-regional and station levels. The entire TP region exhibits a significant warming trend, as reflected by the TEIs. The regional cold days and nights show decreasing trends at rates of-8.9 d(10 yr)-1(days per decade) and-17.3 d(10 yr)-1, respectively. The corresponding warm days and nights have increased by 7.6 d(10 yr)-1 and 12.5 d(10 yr)-1, respectively. At the station level, the majority of stations indicate statistically significant trends for all TEIs, but they show spatial heterogeneity. The eco-regional TEIs show patterns that are consistent with the entire TP. The growing season has become longer at a rate of 5.3 d(10 yr)^-1. The abrupt change points for CEIs were examined, and they were mainly distributed during the 1980 s and 1990 s. The PEIs on the TP exhibit clear fluctuations and increasing trends with small magnitudes. The annual total precipitation has increased by 2.8 mm(10 yr)^-1(not statistically significant). Most of the CEIs will maintain a persistent trend, as indicated by their Hurst exponents. The developing trends of the CEIs do not show a corresponding change with increasing altitude. In general, the warming trends demonstrate an asymmetric pattern reflected by the rapid increase in the warming trends of the cold TEIs, which are of greater magnitudes than those of the warm TEIs. This finding indicates a positive shift in the distribution of the daily minimum temperatures throughout the TP. Most of the PEIs show weak increasing trends, which are not statistically significant. This work aims to delineate a comprehensive picture of the extreme climate conditions over the TP that can enhance our understanding of its changing climate.
基金supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. A9221)Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science, 2011 (Grant No. 22540213)the Romanian Ministry of Education and Research, UEFISCSU-CNCSIS(Grants Nos. PN-II-ID 524/2007, 525/2007)
文摘In this paper we consider extreme points and support points for compact subclasses of normalized biholomorphic mappings of the Euclidean unit ball Bn in Cn. We consider the class So(Bn) of biholomorphic mappings on Bn which have parametric representation, i.e., they are the initial elements f(-, O) of a Loewner chain f(x,t) = etz + ... such that {e-tf(.,t)}t≥o is a normal family on Bn. We show that if f(.,O) is an extreme point (respectively a support point) of So(Bn), then e-t f(., t) is an extreme point of So(Bn) for t≥0 (respectively a support point of So(Bn) for t C [O, t0] and some to〉 0). This is a generalization to the n-dimensional case of work due to Pell. Also, we prove analogous results for mappings which belong to So(Bn) and which are bounded in the norm by a fixed constant. We relate the study of this class to reachable sets in control theory generalizing work of Roth. Finally we consider extreme points and support points for biholomorphic mappings of Bn generated by using extension operators that preserve Loewner chains.