利用NCEP/NCAR逐日再分析资料和中国国家级地面气象站基本气象要素日值数据集,研究了1979~2016年(38年)夏季江淮地区区域性极端日降水事件的统计特征及其与Rossby波活动的联系。结果表明:在38年夏季(6~7月)中,江淮地区区域性极端日降水...利用NCEP/NCAR逐日再分析资料和中国国家级地面气象站基本气象要素日值数据集,研究了1979~2016年(38年)夏季江淮地区区域性极端日降水事件的统计特征及其与Rossby波活动的联系。结果表明:在38年夏季(6~7月)中,江淮地区区域性极端日降水量的95百分位阈值为33.95 mm d^(-1) ,且共有63次极端日降水事件发生。江淮地区极端日降水事件发生时,在对流层中低层受气旋性异常环流控制,在对流层上层受反气旋性异常环流控制,为极端日降水事件的形成和维持提供了有利的斜压性环流背景。源于孟加拉湾和中国南海地区的水汽在江淮地区有较强的汇集,为极端日降水事件的发生、发展提供了有利的水汽条件。在极端日降水事件发生期间,引起江淮地区扰动涡度拟能显著变化的主要是时间平均气流对扰动涡度的平流输送项和扰动气流中的水平散度项;在极端日降水事件发生当天,对流层上层的扰动涡度拟能迅速减弱,同时在低层快速增强。波动起源于里海和黑海附近,有明显的下游频散效应,传至江淮地区约需3~5 d时间,为江淮地区极端日降水事件的形成提供了扰动能量。这些结果加深了对极端日降水事件成因的认识,并为预报预测提供了思路。展开更多
随着全球气候变暖,近年来极端降水事件及其引发的洪涝灾害频发,极端降水事件的模拟与精细化研究显得尤为重要。随着区域气象站网的加密建设,为极端降水事件的精细化研究提供可能。为了将区域站短序列数据应用到日极端降水量的研究中,本...随着全球气候变暖,近年来极端降水事件及其引发的洪涝灾害频发,极端降水事件的模拟与精细化研究显得尤为重要。随着区域气象站网的加密建设,为极端降水事件的精细化研究提供可能。为了将区域站短序列数据应用到日极端降水量的研究中,本研究首先基于年最大值法(annual maximum,AM)和超阈值峰值法(peak over threshold,POT)抽样方法与44种概率分布模型,选择最优抽样方法与概率分布模型,并在此基础上提出对于短序列数据计算日极端降水量的订正方案,通过国家站分析论证,优选出最佳订正方案,将该订正方法应用到只有短序列实测数据的区域站中,优选插值参数并比较不同空间插值方法对插值精度的影响,选择最优的插值方法实现日极端降水量的精细化研究。结果表明,POT1抽样方法与广义帕累托模型是最适用于计算河北省日极端降水量的抽样方法与模型;本研究提出的区域站订正与计算日极端降水量方法可行,将区域站考虑进来后与国家站联合插值使得在空间上更加精细。展开更多
Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyze...Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyzed with a main focus on the trends and variabilities of daily extreme occurrences.Results show significant increases in daily extreme warm temperatures and decreases in daily extreme cold temperatures,defined as the number of days in which daily maximum temperature (Tmax) and daily minimum temperature (Tmin) are greater than the 90th percentile and less than thel0th percentile,respectively.Generally,the trend magnitudes are larger in indices derived from Tmin than those from Tmax.Trends of percentile-based precipitation indices show distinct spatial patterns with increases in heavy precipitation events,defined as the top 95th percentile of daily precipitation,in westem and northeastern China and in the low reaches of the Yangtze River basin region,and slight decreases in other areas.Light precipitation,defined as the tail of the 5th percentile of daily precipitation,however,decreases in most areas.The annual maximum consecutive dry days (CDD) show an increasing trend in southem China and the middle-low reach of the Yellow River basin,while the annual maximum consecutive wet days (CWD) displays a downtrend over most regions except western China.These indices vary significantly with regions and seasons.Overall,occurrences of extreme events in China are more frequent,particularly the night time extreme temperature,and landmasses in China become warmer and wetter.展开更多
The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percen...The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.展开更多
Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events ar...Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events are less in the 1970s and 2000s. The number of extreme events of maximum wind speed and minimum pressure near TC's center reached the highest in the 2000s. The extreme rain duration events had the highest frequence in the 1970s, and the extreme strong wind duration events had the maximum frequence in the 1980s. The number of stations whereat the extreme maximum daily precipitation or process precipitation is observed, is the largest in the 1960s, and the number of stations whereat daily maximum wind speed events axe observed, is the largest in the 1980s.展开更多
文摘利用NCEP/NCAR逐日再分析资料和中国国家级地面气象站基本气象要素日值数据集,研究了1979~2016年(38年)夏季江淮地区区域性极端日降水事件的统计特征及其与Rossby波活动的联系。结果表明:在38年夏季(6~7月)中,江淮地区区域性极端日降水量的95百分位阈值为33.95 mm d^(-1) ,且共有63次极端日降水事件发生。江淮地区极端日降水事件发生时,在对流层中低层受气旋性异常环流控制,在对流层上层受反气旋性异常环流控制,为极端日降水事件的形成和维持提供了有利的斜压性环流背景。源于孟加拉湾和中国南海地区的水汽在江淮地区有较强的汇集,为极端日降水事件的发生、发展提供了有利的水汽条件。在极端日降水事件发生期间,引起江淮地区扰动涡度拟能显著变化的主要是时间平均气流对扰动涡度的平流输送项和扰动气流中的水平散度项;在极端日降水事件发生当天,对流层上层的扰动涡度拟能迅速减弱,同时在低层快速增强。波动起源于里海和黑海附近,有明显的下游频散效应,传至江淮地区约需3~5 d时间,为江淮地区极端日降水事件的形成提供了扰动能量。这些结果加深了对极端日降水事件成因的认识,并为预报预测提供了思路。
文摘随着全球气候变暖,近年来极端降水事件及其引发的洪涝灾害频发,极端降水事件的模拟与精细化研究显得尤为重要。随着区域气象站网的加密建设,为极端降水事件的精细化研究提供可能。为了将区域站短序列数据应用到日极端降水量的研究中,本研究首先基于年最大值法(annual maximum,AM)和超阈值峰值法(peak over threshold,POT)抽样方法与44种概率分布模型,选择最优抽样方法与概率分布模型,并在此基础上提出对于短序列数据计算日极端降水量的订正方案,通过国家站分析论证,优选出最佳订正方案,将该订正方法应用到只有短序列实测数据的区域站中,优选插值参数并比较不同空间插值方法对插值精度的影响,选择最优的插值方法实现日极端降水量的精细化研究。结果表明,POT1抽样方法与广义帕累托模型是最适用于计算河北省日极端降水量的抽样方法与模型;本研究提出的区域站订正与计算日极端降水量方法可行,将区域站考虑进来后与国家站联合插值使得在空间上更加精细。
基金supported by the Department of Science and Technology of China(2009CB421403 and2010CB428403)by the National Natural Science Foundation of China(41275110)
文摘Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyzed with a main focus on the trends and variabilities of daily extreme occurrences.Results show significant increases in daily extreme warm temperatures and decreases in daily extreme cold temperatures,defined as the number of days in which daily maximum temperature (Tmax) and daily minimum temperature (Tmin) are greater than the 90th percentile and less than thel0th percentile,respectively.Generally,the trend magnitudes are larger in indices derived from Tmin than those from Tmax.Trends of percentile-based precipitation indices show distinct spatial patterns with increases in heavy precipitation events,defined as the top 95th percentile of daily precipitation,in westem and northeastern China and in the low reaches of the Yangtze River basin region,and slight decreases in other areas.Light precipitation,defined as the tail of the 5th percentile of daily precipitation,however,decreases in most areas.The annual maximum consecutive dry days (CDD) show an increasing trend in southem China and the middle-low reach of the Yellow River basin,while the annual maximum consecutive wet days (CWD) displays a downtrend over most regions except western China.These indices vary significantly with regions and seasons.Overall,occurrences of extreme events in China are more frequent,particularly the night time extreme temperature,and landmasses in China become warmer and wetter.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41275078)
文摘The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.
基金supported by the National Key Technology Research and Development Program(No. 2008BAC44B03,2007BAC29B04)
文摘Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events are less in the 1970s and 2000s. The number of extreme events of maximum wind speed and minimum pressure near TC's center reached the highest in the 2000s. The extreme rain duration events had the highest frequence in the 1970s, and the extreme strong wind duration events had the maximum frequence in the 1980s. The number of stations whereat the extreme maximum daily precipitation or process precipitation is observed, is the largest in the 1960s, and the number of stations whereat daily maximum wind speed events axe observed, is the largest in the 1980s.