期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
建成环境与共享单车流率的非线性关系研究
被引量:
2
1
作者
路庆昌
徐标
崔欣
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第2期100-110,共11页
共享单车流率的大小体现了城市空间环境内车辆盈缺的程度,理解其变化及其诱因对于城市单车的调度具有重要意义。由于出行目的和外界环境因素的复杂多变,共享单车流率和建成环境特征之间的关系很难通过具有线性假设的统计学模型来解析。...
共享单车流率的大小体现了城市空间环境内车辆盈缺的程度,理解其变化及其诱因对于城市单车的调度具有重要意义。由于出行目的和外界环境因素的复杂多变,共享单车流率和建成环境特征之间的关系很难通过具有线性假设的统计学模型来解析。基于此,本研究利用上海市中心城区的共享单车数据,基于极端梯度提升树模型(XG‐Boost)和机器学习的解释性方法部分依赖图(PDP)来探究建成环境对共享单车流率的贡献度和非线性影响,以及流率的非线性模式在工作日和周末的变化。结果显示,特征重要度和非线性机制在两个时段差异化显著。居住人口密度、教育设施密度和住宅设施密度对工作日单车流率的解释度较高,分别为 19.18%、13.16% 和 12.92%,并且具有明显的阈值效应。其中居住人口密度和教育设施密度对于单车净流出率具有正向影响,分别在 11 600 人/km^(2)和 8 个/km^(2)达到最大;住宅设施密度对单车净流出率具有负向影响,对应的阈值为 40 个/km^(2)。各变量对周末单车流率的解释度差异较小,但非线性关系仍不可忽视。具体来说,到市中心的距离和公交线数密度对周末单车净流入率正向影响显著,有效范围为 18~23 km和28~52 条/km^(2);容积率对周末单车净流出率正向影响范围在 0.89~1.41。上述发现表明 XGBoost 模型可以有效弥补传统回归模型(MLR)线性假设的偏见,建成环境特征贡献度和影响范围的揭示也为管理部门针对具有不同建成环境水平地区的单车调度提供决策建议。
展开更多
关键词
共享单车流率
建成环境
极端梯度提升树模型
非线性
调度管理
下载PDF
职称材料
网络流量时延特征数据的识别方法仿真
被引量:
6
2
作者
周家恺
綦方中
《计算机仿真》
北大核心
2022年第5期398-401,460,共5页
当前的网络流量时延特征识别方法未能在特征识别过程提升流量梯度,导致识别出现较大偏差,且方法的响应时间较长。为此提出基于朴素贝叶斯的网络流量时延特征识别方法。利用移动蜂窝网络通信链路技术和无线资源控制机制造成的网络流量时...
当前的网络流量时延特征识别方法未能在特征识别过程提升流量梯度,导致识别出现较大偏差,且方法的响应时间较长。为此提出基于朴素贝叶斯的网络流量时延特征识别方法。利用移动蜂窝网络通信链路技术和无线资源控制机制造成的网络流量时延波动完成建模分析,同时结合往返时延计算结果,获取与数据时延相关的网络流量特征。通过特征描述得到不同网络节点接入互联网技术差异导致的时序分布。将极端梯度提升树模型和朴素贝叶斯相结合,构建分类器,完成网络流量时延特征的识别。仿真结果表明,所提方法能够获取高精度的网络流量时延特征识别结果,同时还能够有效缩短响应时间。
展开更多
关键词
朴素贝叶斯
网络流量
时延特征识别
极端梯度提升树模型
下载PDF
职称材料
题名
建成环境与共享单车流率的非线性关系研究
被引量:
2
1
作者
路庆昌
徐标
崔欣
机构
长安大学电子与控制工程学院
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第2期100-110,共11页
基金
国家自然科学基金面上项目(71971029)
霍英东青年教师基金项目(171069)。
文摘
共享单车流率的大小体现了城市空间环境内车辆盈缺的程度,理解其变化及其诱因对于城市单车的调度具有重要意义。由于出行目的和外界环境因素的复杂多变,共享单车流率和建成环境特征之间的关系很难通过具有线性假设的统计学模型来解析。基于此,本研究利用上海市中心城区的共享单车数据,基于极端梯度提升树模型(XG‐Boost)和机器学习的解释性方法部分依赖图(PDP)来探究建成环境对共享单车流率的贡献度和非线性影响,以及流率的非线性模式在工作日和周末的变化。结果显示,特征重要度和非线性机制在两个时段差异化显著。居住人口密度、教育设施密度和住宅设施密度对工作日单车流率的解释度较高,分别为 19.18%、13.16% 和 12.92%,并且具有明显的阈值效应。其中居住人口密度和教育设施密度对于单车净流出率具有正向影响,分别在 11 600 人/km^(2)和 8 个/km^(2)达到最大;住宅设施密度对单车净流出率具有负向影响,对应的阈值为 40 个/km^(2)。各变量对周末单车流率的解释度差异较小,但非线性关系仍不可忽视。具体来说,到市中心的距离和公交线数密度对周末单车净流入率正向影响显著,有效范围为 18~23 km和28~52 条/km^(2);容积率对周末单车净流出率正向影响范围在 0.89~1.41。上述发现表明 XGBoost 模型可以有效弥补传统回归模型(MLR)线性假设的偏见,建成环境特征贡献度和影响范围的揭示也为管理部门针对具有不同建成环境水平地区的单车调度提供决策建议。
关键词
共享单车流率
建成环境
极端梯度提升树模型
非线性
调度管理
Keywords
bike-sharing flow rate
built environment
extreme gradient boosting tree model
non-linear
scheduling management
分类号
U491.1 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
网络流量时延特征数据的识别方法仿真
被引量:
6
2
作者
周家恺
綦方中
机构
浙江工业大学
出处
《计算机仿真》
北大核心
2022年第5期398-401,460,共5页
文摘
当前的网络流量时延特征识别方法未能在特征识别过程提升流量梯度,导致识别出现较大偏差,且方法的响应时间较长。为此提出基于朴素贝叶斯的网络流量时延特征识别方法。利用移动蜂窝网络通信链路技术和无线资源控制机制造成的网络流量时延波动完成建模分析,同时结合往返时延计算结果,获取与数据时延相关的网络流量特征。通过特征描述得到不同网络节点接入互联网技术差异导致的时序分布。将极端梯度提升树模型和朴素贝叶斯相结合,构建分类器,完成网络流量时延特征的识别。仿真结果表明,所提方法能够获取高精度的网络流量时延特征识别结果,同时还能够有效缩短响应时间。
关键词
朴素贝叶斯
网络流量
时延特征识别
极端梯度提升树模型
Keywords
Naive Bayes
network flow
Time delay feature recognition
Extreme gradient lifting tree model
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
建成环境与共享单车流率的非线性关系研究
路庆昌
徐标
崔欣
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
2
网络流量时延特征数据的识别方法仿真
周家恺
綦方中
《计算机仿真》
北大核心
2022
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部