期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于XGBoost算法的胶凝砂砾石劈拉强度预测分析 被引量:3
1
作者 郭磊 李泽宣 +2 位作者 田青青 郭利霞 高航 《建筑材料学报》 EI CAS CSCD 北大核心 2023年第4期378-382,388,共6页
将水泥质量浓度、砂率、水胶比和粉煤灰质量浓度设为输入变量,28 d劈拉强度设为输出变量,用极端梯度提升树(XGBoost)算法对胶凝砂砾石(CSG)的劈拉强度进行预测,并与随机森林(RF)算法的预测结果进行对比,以决策系数(R^(2))、均方根误差(R... 将水泥质量浓度、砂率、水胶比和粉煤灰质量浓度设为输入变量,28 d劈拉强度设为输出变量,用极端梯度提升树(XGBoost)算法对胶凝砂砾石(CSG)的劈拉强度进行预测,并与随机森林(RF)算法的预测结果进行对比,以决策系数(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)和平均百分比误差(MAPE)作为评估标准对2种算法进行对比分析.结果表明:XGBoost算法的R2为0.968 1,具有高度的预测准确性;相比表现良好的RF算法,XGBoost算法测试集的RMSE和MAE均降低了0.003, MAPE降低了0.32%,表明XGBoost算法能够对CSG劈拉强度进行更为精准的预测. 展开更多
关键词 极端梯度提升树算法 随机森林算法 强度预测 胶凝砂砾石 劈拉强度
下载PDF
基于Stacking模型融合的胎儿健康状态智能评估 被引量:2
2
作者 郝婧宇 陈奕 吴水才 《中国医疗设备》 2022年第7期19-25,共7页
目的研究机器学习算法评估妊娠期间胎儿在子宫内的状态,提出一种基于Stacking模型融合的胎儿宫内状态智能评估新方法。方法在特征选择阶段,运用极端梯度提升树与热力图对公开的胎心数据集分析,选择出最优特征子集。在分类阶段,运用一种... 目的研究机器学习算法评估妊娠期间胎儿在子宫内的状态,提出一种基于Stacking模型融合的胎儿宫内状态智能评估新方法。方法在特征选择阶段,运用极端梯度提升树与热力图对公开的胎心数据集分析,选择出最优特征子集。在分类阶段,运用一种两层Stacking模型融合新方法对胎儿进行评估,第一层集合5种强机器学习模型来训练,第二层采用Logistics回归模型。结果运用胎心数据测试集来验证,分类准确率达0.950,受试者曲线下面积达0.980。结论基于Stacking模型融合的新方法可辅助临床医师对胎儿宫内健康状态进行诊断。 展开更多
关键词 胎心监护 极端梯度提升树算法 Stacking模型融合 机器学习算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部