期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于决策树模型的耕地地力与玉米丝黑穗病发生关系研究 被引量:2
1
作者 陈丽 崔运鹏 +5 位作者 王末 牛永春 徐爱国 刘珂艺 刘娟 侯颖 《农业资源与环境学报》 CAS CSCD 北大核心 2021年第5期928-936,共9页
为了探究耕地地力与玉米丝黑穗病发生关系,本研究以515个主要玉米种植县域为研究区域,选取有机质(Organic matter,OM)、全氮(Total nitrogen,TN)、全磷(Total phosphorus,TP)、全钾(Total potassium,TK)、有效磷(Available phosphorus,... 为了探究耕地地力与玉米丝黑穗病发生关系,本研究以515个主要玉米种植县域为研究区域,选取有机质(Organic matter,OM)、全氮(Total nitrogen,TN)、全磷(Total phosphorus,TP)、全钾(Total potassium,TK)、有效磷(Available phosphorus,AP)、速效钾(Available potassium,AK)和pH 7种耕地地力因子,分别利用分类与回归树(Classification and regression tree,CART)模型、随机森林(Random forest,RF)模型和极端随机树(Extremely randomized trees,ERT)模型构建了玉米丝黑穗病发生程度与耕地地力因子关系模型,并进行了3种模型效果比较。结果表明:RF和ERT模型总分类性能明显优于CART模型,3个模型在病害发生程度1级(GⅠ)上的查准率(Precision,Pr)、查全率(Recall,Re)、F1 score(F1)值均较高,分类效果比病害发生程度2级(GⅡ)要好,但考虑到准确监测病害高发情况、减少高发病情况在分类预测中漏分机率对开展病害防治的重要性,确定ERT模型为最佳优选分类器。耕地地力特征变量与病害发生程度重要性分析表明,玉米丝黑穗病发生程度与耕地地力因子AP、TK、pH和TP具有一定的相关性。研究结果为深入探究耕地地力对玉米丝黑穗病影响机理提供了线索和支撑。 展开更多
关键词 玉米丝黑穗病 耕地地力 分类与回归模型 随机森林模型 极端随机树模型
下载PDF
基于集成模型的超短时负荷预测方法 被引量:4
2
作者 魏健 赵红涛 +1 位作者 刘敦楠 加鹤萍 《计算机与现代化》 2021年第3期12-17,共6页
精准的短期负荷预测是保证电力系统顺利运行的关键。机器学习算法普及后,为以前难以解决的短期和超短期负荷预测提供了算法支持。鉴于梯度提升决策树(Catboost)、卷积神经网络-长短期记忆网络(CNN-LSTM)、极端随机树(Extratrees)等集成... 精准的短期负荷预测是保证电力系统顺利运行的关键。机器学习算法普及后,为以前难以解决的短期和超短期负荷预测提供了算法支持。鉴于梯度提升决策树(Catboost)、卷积神经网络-长短期记忆网络(CNN-LSTM)、极端随机树(Extratrees)等集成模型处理非线性相关数据效果好,本文将上述3种方法进行组合,构建集成预测模型,使用BP神经网络确定权重系数,通过权重将各种单项预测模型的优点结合在一起,从而起到了更好的预测效果。为了更好地说明本文使用方法的优点,本文采用平均绝对百分比误差(MAPE)和均方根误差、均方误差、拟合优度作为衡量指标,以集成模型与各个单项预测模型作对比,在MAPE标准下,集成模型比Catboost、CNN-LSTM、Extratrees模型分别降低了1.01个百分点、0.94个百分点、1.19个百分点。 展开更多
关键词 超短时负荷预测 集成模型 梯度提升决策(Catboost)模型 卷积神经网络-长短时记忆网络 极端随机树模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部