期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于半监督学习标签传播-极端随机树算法的光伏阵列故障诊断及定位 被引量:4
1
作者 徐先峰 李芷菡 +4 位作者 刘状壮 王轲 马志雄 姚景杰 蔡路路 《电网技术》 EI CSCD 北大核心 2023年第3期1038-1046,共9页
对光伏阵列故障进行精确诊断和定位有助于提升光伏发电系统的可靠性。针对现有的诊断方法过度依赖大量有标签样本,难以同时兼顾故障类型诊断、故障定位及低成本等问题,将多传感器法与半监督学习算法相结合,构建了一种融合标签传播算法(l... 对光伏阵列故障进行精确诊断和定位有助于提升光伏发电系统的可靠性。针对现有的诊断方法过度依赖大量有标签样本,难以同时兼顾故障类型诊断、故障定位及低成本等问题,将多传感器法与半监督学习算法相结合,构建了一种融合标签传播算法(label propagation,LP)和极端随机树(extra-trees,ET)的半监督学习算法LP-ET。为克服工程实际故障样本较少且往往缺失故障标签的问题,搭建了光伏阵列故障仿真模型获取样本,引入LP算法,基于少量含故障类型及定位信息的有标签故障样本,实现原始故障样本集全标注;继而引入ET模型,持续构建大量决策树形成极端随机树,采用多数投票机制(Bagging)获得故障类型及定位结果。实验结果表明,所提出的LP-ET模型可以在含有大比例未标注样本数据集情况下实现短路、断路、退化及遮阴故障的较高精度诊断,兼顾单组件及多组件故障,有效解决光伏阵列故障诊断及定位问题。 展开更多
关键词 光伏阵列 故障诊断及定位 多传感器法 半监督学习 标签传播-极端随机树算法
下载PDF
网络小额贷款业务个人信用风险评估——基于DNN-SMOTEENN-ExtraTrees组合模型 被引量:3
2
作者 吕秀梅 张儒 《数学的实践与认识》 2023年第7期14-21,共8页
针对网络小额贷款业务,构建组合模型DNN-SMOTEENN-ExtraTrees评估网络小贷信用风险.首先利用SMOTEENN算法处理样本数据中“好”和“坏”样本分布极端不平衡情况,再利用极端随机数算法ExtraTrees对特征重要性进行评估并剔除无关变量,最... 针对网络小额贷款业务,构建组合模型DNN-SMOTEENN-ExtraTrees评估网络小贷信用风险.首先利用SMOTEENN算法处理样本数据中“好”和“坏”样本分布极端不平衡情况,再利用极端随机数算法ExtraTrees对特征重要性进行评估并剔除无关变量,最后采用深度神经网络DNN评估网络小贷个人信用风险.通过召回率、精确度、F1值和AUC值等模型性能评价指标,与BP神经网络模型、Logistic回归及支持向量机比较,发现组合模型分类能力更显著,泛化能力更加优异,更适合数据规模大、维度高的网络小贷市场评估信用风险. 展开更多
关键词 信用风险评估 DNN-SMOTEENN-ExtraTrees组合模型 深度神经网络 SMOTEENN 极端随机树算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部