期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
支持在线学习的增量式极端随机森林分类器 被引量:56
1
作者 王爱平 万国伟 +1 位作者 程志全 李思昆 《软件学报》 EI CSCD 北大核心 2011年第9期2059-2074,共16页
提出了一种增量式极端随机森林分类器(incremental extremely random forest,简称IERF),用于处理数据流,特别是小样本数据流的在线学习问题.IERF算法中新到达的样本将被存储到相应的叶节点,并通过Gini系数来确定是否对当前叶节点进行分... 提出了一种增量式极端随机森林分类器(incremental extremely random forest,简称IERF),用于处理数据流,特别是小样本数据流的在线学习问题.IERF算法中新到达的样本将被存储到相应的叶节点,并通过Gini系数来确定是否对当前叶节点进行分裂扩展,在给定有限数量,甚至是少量样本的情况下,IERF算法能够快速高效地完成分类器的增量构造.UCI数据集的实验证明,提出的IERF算法具有与离线批量学习的极端随机森林(extremely random forest,简称ERF)算法相当甚至更优的性能,在适度规模的样本集上,性能优于贪婪决策树重构算法和其他几种主要的增量学习算法.最后,提出的IERF算法被应用于解决视频在线跟踪(包含多目标跟踪)问题,基于多个真实视频数据的实验充分验证了算法的有效性和稳定性. 展开更多
关键词 在线学习 增量学习 极端随机森林分类器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部