The spatial and temporal variations of some important near-surface climate parameters and extreme climate events in North China during 1961-2010 are analyzed by using 94 meteorological stations' data in the study are...The spatial and temporal variations of some important near-surface climate parameters and extreme climate events in North China during 1961-2010 are analyzed by using 94 meteorological stations' data in the study area. Results show that the annual mean surface air temperature in North China increased at the rate of 0.36℃ per decade, higher than the national average in the same period. Increasing was particularly significant since the mid-1980s, with maximum increase in the middle and northeastern parts of Inner Mongolia. Increasing rate of the annual mean minimum temperature is much higher than that of the maximum temperature, which results in the decrease of the annual mean diurnal temperature range. Noticeable decrease is also observed in the frequency of cold wave. Annual precipitation shows a slight decreasing trend, with more pronounced decrease in southern Shanxi and eastern Hebei provinces, which is mainly represented as decreasing in contribution rates of rainstorm and heavy storm in flood-season (May to September). During 1961 -2010, North China is characterized by a noticeable reduction in annual extreme precipitation, and an increase in high-temperature days over most parts, as well as more frequent droughts. There are remarkable reductions in annual sunshine duration and mean wind speed, associated with the most significant reduction of mean wind speed in midwestern and eastern parts of Inner Mongolia. Meanwhile, North China has experienced a noticeable decrease/increase in annual mean sanddust/haze days during the study period. However, there is no significant trend in fog days, except a pronounced decrease since the 1990s.展开更多
To avoid dangerous climate change impact, the Paris Agreement sets out two ambitious goals: to limit the global warming to be well below 2 ℃ and to pursue effort for the global warming to be below 1.5 ℃ above the ...To avoid dangerous climate change impact, the Paris Agreement sets out two ambitious goals: to limit the global warming to be well below 2 ℃ and to pursue effort for the global warming to be below 1.5 ℃ above the pre-industrial level. As climate change risks may be region-dependent, changes in magnitude and probability of extreme precipitation over China are investigated under those two global warming levels based on simulations from the Coupled Model Inter-Comparison Projects Phase 5. The focus is on the added changes due to the additional half a degree warming from 1.5 ℃ to 2 ℃ . Results show that regional average changes in the magnitude do not depend on the return periods with a relative increase around 7% and 11% at the 1.5 ℃ and 2 ℃ global warming levels, respectively. The additional half a degree global warming adds an additional increase in the magnitude by nearly 4%. The regional average changes in term of occurrence probabilities show dependence on the return periods, with rarer events(longer return periods) having larger increase of risk. For the 100-year historical event, the probability is projected to increase by a factor of 1.6 and 2.4 at the 1.5 ℃ and 2 ℃ global warming levels, respectively.The projected changes in extreme precipitation are independent of the RCP scenarios.展开更多
基金supported by the Climate Change Special Foundation of China Meteorological Administration(No. CCSF2010-1)
文摘The spatial and temporal variations of some important near-surface climate parameters and extreme climate events in North China during 1961-2010 are analyzed by using 94 meteorological stations' data in the study area. Results show that the annual mean surface air temperature in North China increased at the rate of 0.36℃ per decade, higher than the national average in the same period. Increasing was particularly significant since the mid-1980s, with maximum increase in the middle and northeastern parts of Inner Mongolia. Increasing rate of the annual mean minimum temperature is much higher than that of the maximum temperature, which results in the decrease of the annual mean diurnal temperature range. Noticeable decrease is also observed in the frequency of cold wave. Annual precipitation shows a slight decreasing trend, with more pronounced decrease in southern Shanxi and eastern Hebei provinces, which is mainly represented as decreasing in contribution rates of rainstorm and heavy storm in flood-season (May to September). During 1961 -2010, North China is characterized by a noticeable reduction in annual extreme precipitation, and an increase in high-temperature days over most parts, as well as more frequent droughts. There are remarkable reductions in annual sunshine duration and mean wind speed, associated with the most significant reduction of mean wind speed in midwestern and eastern parts of Inner Mongolia. Meanwhile, North China has experienced a noticeable decrease/increase in annual mean sanddust/haze days during the study period. However, there is no significant trend in fog days, except a pronounced decrease since the 1990s.
基金supported by the National Key R&D Program of China(Grant 2017YFA0603804)the State Key Program of National Natural Science Foundation of China(41230528)+1 种基金the China Scholarship Council(CSC)under the State Scholarship Fundsupported by the French ANR Project China-Trend-Stream
文摘To avoid dangerous climate change impact, the Paris Agreement sets out two ambitious goals: to limit the global warming to be well below 2 ℃ and to pursue effort for the global warming to be below 1.5 ℃ above the pre-industrial level. As climate change risks may be region-dependent, changes in magnitude and probability of extreme precipitation over China are investigated under those two global warming levels based on simulations from the Coupled Model Inter-Comparison Projects Phase 5. The focus is on the added changes due to the additional half a degree warming from 1.5 ℃ to 2 ℃ . Results show that regional average changes in the magnitude do not depend on the return periods with a relative increase around 7% and 11% at the 1.5 ℃ and 2 ℃ global warming levels, respectively. The additional half a degree global warming adds an additional increase in the magnitude by nearly 4%. The regional average changes in term of occurrence probabilities show dependence on the return periods, with rarer events(longer return periods) having larger increase of risk. For the 100-year historical event, the probability is projected to increase by a factor of 1.6 and 2.4 at the 1.5 ℃ and 2 ℃ global warming levels, respectively.The projected changes in extreme precipitation are independent of the RCP scenarios.