在结构化场景的轨道交通中,车载视频观测因相机平移运动而呈现出图像内容以某点为中心向四周扩散的现象,该点被称为FOE(Focus of Expansion)。当前计算FOE的算法对噪声敏感且计算量大,不能准确地计算铁路场景中的FOE。鉴于此,文中提出...在结构化场景的轨道交通中,车载视频观测因相机平移运动而呈现出图像内容以某点为中心向四周扩散的现象,该点被称为FOE(Focus of Expansion)。当前计算FOE的算法对噪声敏感且计算量大,不能准确地计算铁路场景中的FOE。鉴于此,文中提出一种铁路视频序列的FOE估计方法。该方法首先利用金字塔光流法对检测的Harris角点进行跟踪和粗匹配,并在此基础上利用RANSAC算法进行精确的匹配,求得基础矩阵,然后提取图像中的极线束并计算FOE。实验结果表明,所提算法比Hough直线求得的FOE误差小,适于实时应用。展开更多
The influence of the electric field on the properties of the bound magnetopolaron in an infinite-depth GaAs semiconductor quantum well is investigated using the linear-combination operator and the unitary transformati...The influence of the electric field on the properties of the bound magnetopolaron in an infinite-depth GaAs semiconductor quantum well is investigated using the linear-combination operator and the unitary transformation method. The relationships between the polaron's ground state energy and the Coulomb bound potential, electric field, magnetic field, and well-width are derived and discussed. Our numerical results show that the absolute value of the polaron's ground state energy increases as the electric field and the Coulomb bound potential increase, and decreases as the well-width and the magnetic field strength increase. When the well-width is small,the quantum size effect is significant.展开更多
We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of...We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.展开更多
The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement. Numerical and analytical results showed that when configur...The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement. Numerical and analytical results showed that when configuration changes from quantum dot and wire to well, confinement shows different effect on the formation of a bipolaron. In contrast to a bipolaron in a quantum dot or wire, the binding energy of a bipolaron in a quantum well increases with increasing con-finement, indicating that confinement favors bipolaron formation in a quantum well.展开更多
Let X be a complex nonsingular projective threefold of general type. It is shown that the dimension of the image of X through m-canonical maps is at least two for every m 3.
文摘在结构化场景的轨道交通中,车载视频观测因相机平移运动而呈现出图像内容以某点为中心向四周扩散的现象,该点被称为FOE(Focus of Expansion)。当前计算FOE的算法对噪声敏感且计算量大,不能准确地计算铁路场景中的FOE。鉴于此,文中提出一种铁路视频序列的FOE估计方法。该方法首先利用金字塔光流法对检测的Harris角点进行跟踪和粗匹配,并在此基础上利用RANSAC算法进行精确的匹配,求得基础矩阵,然后提取图像中的极线束并计算FOE。实验结果表明,所提算法比Hough直线求得的FOE误差小,适于实时应用。
文摘The influence of the electric field on the properties of the bound magnetopolaron in an infinite-depth GaAs semiconductor quantum well is investigated using the linear-combination operator and the unitary transformation method. The relationships between the polaron's ground state energy and the Coulomb bound potential, electric field, magnetic field, and well-width are derived and discussed. Our numerical results show that the absolute value of the polaron's ground state energy increases as the electric field and the Coulomb bound potential increase, and decreases as the well-width and the magnetic field strength increase. When the well-width is small,the quantum size effect is significant.
文摘We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.
文摘The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement. Numerical and analytical results showed that when configuration changes from quantum dot and wire to well, confinement shows different effect on the formation of a bipolaron. In contrast to a bipolaron in a quantum dot or wire, the binding energy of a bipolaron in a quantum well increases with increasing con-finement, indicating that confinement favors bipolaron formation in a quantum well.
文摘Let X be a complex nonsingular projective threefold of general type. It is shown that the dimension of the image of X through m-canonical maps is at least two for every m 3.