This paper retrieves the bidirectional polarization distribution functions (BPDFs) of the distinct urban cover in the Pearl River Delta (PRD) region employing the high spatial resolution of multi-angle polarized measu...This paper retrieves the bidirectional polarization distribution functions (BPDFs) of the distinct urban cover in the Pearl River Delta (PRD) region employing the high spatial resolution of multi-angle polarized measurements made by the Directional Polarimetric Camera (DPC).The BPDF operational products of MICROPOL and POLDER measurements were used to validate the BPDF products of the DPC,with the results demonstrating that the BPDF product of the DPC measurements accurately expresses the surface polarized reflectance.The polarized reflectance of distinct surface types in the PRD region was studied using the DPC measurements.The results demonstrate that the polarized reflectances of different surface types differ and decrease as the normalized difference vegetation index increases.The polarized reflectance of a distinct surface type in the PRD region decreases with increasing scattering angle.The basic theory of investigating surface properties using multi-angle polarized measurements is proposed.展开更多
基金supported by the National Basic Research Program of China(Grant No.2010CB950800)the National Natural Science Foundation of China(Grant No.41001207)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering(Grant No.KZCX2-EW-QN311)
文摘This paper retrieves the bidirectional polarization distribution functions (BPDFs) of the distinct urban cover in the Pearl River Delta (PRD) region employing the high spatial resolution of multi-angle polarized measurements made by the Directional Polarimetric Camera (DPC).The BPDF operational products of MICROPOL and POLDER measurements were used to validate the BPDF products of the DPC,with the results demonstrating that the BPDF product of the DPC measurements accurately expresses the surface polarized reflectance.The polarized reflectance of distinct surface types in the PRD region was studied using the DPC measurements.The results demonstrate that the polarized reflectances of different surface types differ and decrease as the normalized difference vegetation index increases.The polarized reflectance of a distinct surface type in the PRD region decreases with increasing scattering angle.The basic theory of investigating surface properties using multi-angle polarized measurements is proposed.