期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于特征值极限分布理论的盲多天线频谱感知算法 被引量:1
1
作者 倪真 胡力 +2 位作者 刘耀峰 王向明 雷可君 《电子器件》 CAS 北大核心 2018年第3期593-598,共6页
当信道空闲时接收信号取样协方差矩阵的特征值在数值上均近似等于噪声方差,而主用户信号的出现则改变了这些特征值的大小。基于这一事实,提出一种基于取样协方差矩阵特征值的频谱感知算法。该算法以取样协方差矩阵的最大特征值与其他特... 当信道空闲时接收信号取样协方差矩阵的特征值在数值上均近似等于噪声方差,而主用户信号的出现则改变了这些特征值的大小。基于这一事实,提出一种基于取样协方差矩阵特征值的频谱感知算法。该算法以取样协方差矩阵的最大特征值与其他特征值的和之比作为感知判决量。基于大维随机矩阵理论的特征值极限分布理论,分析了算法的理论虚警性能,在此基础上提出了理论判决门限的计算方法。新算法在感知判决过程中无需事先知道噪声方差、主用户信号和信道增益等先验信息。因而,新算法属于一种全盲多天线频谱感知算法,具有广泛的适用范围。进一步的数值仿真结果验证了新方法的有效性。 展开更多
关键词 认知无线电 盲频谱感知 取样协方差矩阵 特征值 极限分布理论
下载PDF
A class of not max-stable extreme value distributions
2
作者 蒋岳祥 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第4期315-321,共7页
The sequences {Zi , 1≤i≤n}, n≥1 have multi-nomial distribution among i.i.d. random variables {X1, , i≥1}, {X2, , ,n i i i≥1}, …, {Xm , i≥1}. The extreme value distribution GZ(x) of this particular triangular ar... The sequences {Zi , 1≤i≤n}, n≥1 have multi-nomial distribution among i.i.d. random variables {X1, , i≥1}, {X2, , ,n i i i≥1}, …, {Xm , i≥1}. The extreme value distribution GZ(x) of this particular triangular array of i.i.d. random variables Z1, , Z2, , …, ,i n n r ?1 Zn is discussed in this paper. We found a new type of not max-stable extreme value distributions, i) GZ (x) = ,n ∏Φα Ai(x)×Φαr (x); i i=1 r ?1 r?1 ii) GZ (x) = ∏Ψα Ai(x)×Ψαr (x); iii) GZ (x) = ∏Λ Ai(λix)×Λ(x), r≥2, 0<α1≤α2≤…≤αr and λi∈(0,1] for i, 1≤i≤r?1 which occur if i i=1 i=1 Fj, …, Fm belong to the same MDA. 展开更多
关键词 Extreme value distribution Maximum domain of attraction (MDA) Mixed distribution functions
下载PDF
An Improved Result in Almost Sure Central Limit Theory for Products of Partial Sums with Stable Distribution 被引量:1
3
作者 Qunying WU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第6期919-930,共12页
Consider a sequence of i.i.d.positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theore... Consider a sequence of i.i.d.positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theorem for products of partial sums is established. Our results significantly generalize and improve those on the almost sure central limit theory previously obtained by Gonchigdanzan and Rempale and by Gonchigdanzan.In a sense,our results reach the optimal form. 展开更多
关键词 Almost sure central limit theorem Product of partial sums Stable distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部