The sequences {Zi , 1≤i≤n}, n≥1 have multi-nomial distribution among i.i.d. random variables {X1, , i≥1}, {X2, , ,n i i i≥1}, …, {Xm , i≥1}. The extreme value distribution GZ(x) of this particular triangular ar...The sequences {Zi , 1≤i≤n}, n≥1 have multi-nomial distribution among i.i.d. random variables {X1, , i≥1}, {X2, , ,n i i i≥1}, …, {Xm , i≥1}. The extreme value distribution GZ(x) of this particular triangular array of i.i.d. random variables Z1, , Z2, , …, ,i n n r ?1 Zn is discussed in this paper. We found a new type of not max-stable extreme value distributions, i) GZ (x) = ,n ∏Φα Ai(x)×Φαr (x); i i=1 r ?1 r?1 ii) GZ (x) = ∏Ψα Ai(x)×Ψαr (x); iii) GZ (x) = ∏Λ Ai(λix)×Λ(x), r≥2, 0<α1≤α2≤…≤αr and λi∈(0,1] for i, 1≤i≤r?1 which occur if i i=1 i=1 Fj, …, Fm belong to the same MDA.展开更多
Consider a sequence of i.i.d.positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theore...Consider a sequence of i.i.d.positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theorem for products of partial sums is established. Our results significantly generalize and improve those on the almost sure central limit theory previously obtained by Gonchigdanzan and Rempale and by Gonchigdanzan.In a sense,our results reach the optimal form.展开更多
基金Project partially supported by the Swiss National Science Foundation
文摘The sequences {Zi , 1≤i≤n}, n≥1 have multi-nomial distribution among i.i.d. random variables {X1, , i≥1}, {X2, , ,n i i i≥1}, …, {Xm , i≥1}. The extreme value distribution GZ(x) of this particular triangular array of i.i.d. random variables Z1, , Z2, , …, ,i n n r ?1 Zn is discussed in this paper. We found a new type of not max-stable extreme value distributions, i) GZ (x) = ,n ∏Φα Ai(x)×Φαr (x); i i=1 r ?1 r?1 ii) GZ (x) = ∏Ψα Ai(x)×Ψαr (x); iii) GZ (x) = ∏Λ Ai(λix)×Λ(x), r≥2, 0<α1≤α2≤…≤αr and λi∈(0,1] for i, 1≤i≤r?1 which occur if i i=1 i=1 Fj, …, Fm belong to the same MDA.
基金Project supported by the National Natural Science Foundation of China(No.11061012)the NaturalScience Foundation of Guangxi Province(No.2012GXNSFAA053010)
文摘Consider a sequence of i.i.d.positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theorem for products of partial sums is established. Our results significantly generalize and improve those on the almost sure central limit theory previously obtained by Gonchigdanzan and Rempale and by Gonchigdanzan.In a sense,our results reach the optimal form.