期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
引入神经网络极限学习机的关键数据查询模型
1
作者 张勇飞 陈艳君 赵世忠 《计算机仿真》 2024年第3期519-523,共5页
网络空间数据的结构具有较高相似性,海量数据的不断增量更新,导致关键数据查询结果存在冗余和偏离问题。因此提出基于神经网络极限学习机的关键数据查询方法。建模描述关键数据查询问题。基于此引入神经网络极限学习机,建立关键数据查... 网络空间数据的结构具有较高相似性,海量数据的不断增量更新,导致关键数据查询结果存在冗余和偏离问题。因此提出基于神经网络极限学习机的关键数据查询方法。建模描述关键数据查询问题。基于此引入神经网络极限学习机,建立关键数据查询模型。预处理数据库中无用数据和重复数据做,通过输出权值范数的最小二乘解,避免算法陷入局部最优。结合输出矩阵,训练查询模型,输出结果结果即为关键数据查询结果。为证明上述方法的性能优势,设计对比实验,结果表明提出的方法应用于关键数据查询的均方根误差不超过1.2,平均绝对百分比误差最高为4.1%,关系数F可达0.6,网络节点的使用率低于20%。以上实验数据验证了上述方法数据查询精度较高,可应用性更强。 展开更多
关键词 神经网络极限学习 关键数据 输出权值 最小二乘解 数据预处理
下载PDF
基于神经网络极限学习机数据融合的共轴跟踪 被引量:5
2
作者 王威立 郭劲 +1 位作者 曹立华 陈娟 《光学精密工程》 EI CAS CSCD 北大核心 2013年第3期751-758,共8页
为了在光电跟踪伺服系统中实现共轴跟踪,采用神经网络极限学习机(ELM)对光电跟踪系统设备的运动状态及脱靶量进行了学习、训练和融合,得到了目标的速度和加速度信息。通过算法优化减少了ELM系统大约50%的运算量,使运算周期约为3.5ms,满... 为了在光电跟踪伺服系统中实现共轴跟踪,采用神经网络极限学习机(ELM)对光电跟踪系统设备的运动状态及脱靶量进行了学习、训练和融合,得到了目标的速度和加速度信息。通过算法优化减少了ELM系统大约50%的运算量,使运算周期约为3.5ms,满足光电跟踪系统的实时性要求。仿真结果表明,当目标运动速度为50°/s、加速度为30(°)/s2时,预测的目标速度在峰值时的误差大约为±3(°)/s。最后,通过跟踪光学动态靶标进行了共轴跟踪实验验证。结果显示,系统最大跟踪误差由速度、位置闭环时的11.35′减小到0.88′,随机误差由8.2″减少到7.6″。与其它控制方法相比,提出的方法具有更高的实时性和精确度,能有效提高系统的跟踪精度。 展开更多
关键词 共轴跟踪 神经网络极限学习 光电跟踪 数据融合
下载PDF
人工鱼群算法优化神经网络的网络入侵检测 被引量:4
3
作者 刘春 《计算机安全》 2014年第7期2-5,共4页
为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)优化ELM神经网络的网络入侵检测模型。首先将ELM神经网络参数编码成人工鱼的位置,然后利用人工鱼群算法通过模拟鱼群的觅食、聚群及追尾行为找到最优ELM神经网络参数,最后利用最优参... 为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)优化ELM神经网络的网络入侵检测模型。首先将ELM神经网络参数编码成人工鱼的位置,然后利用人工鱼群算法通过模拟鱼群的觅食、聚群及追尾行为找到最优ELM神经网络参数,最后利用最优参数的ELM神经网络建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,模型不仅提高了入侵检测正确率,而且加快了网络入侵检测速度。 展开更多
关键词 网络入侵检测 人工鱼群算法 极限学习机神经网络 参数优化
下载PDF
基于GA-ELM算法的燃料电池性能预测模型 被引量:3
4
作者 刘智宇 郝冬 +1 位作者 张妍懿 侯永平 《电池》 CAS 北大核心 2023年第3期243-247,共5页
为减少燃料电池堆耐久性能试验物料成本,提升耐久性能预测效率,利用燃料电池堆稳态耐久性试验数据,基于遗传算法(GA)-极限学习机(ELM)算法结合神经网络与遗传算法,搭建燃料电池稳态耐久性能预测模型。该模型为双输入[时间和电流(或电流... 为减少燃料电池堆耐久性能试验物料成本,提升耐久性能预测效率,利用燃料电池堆稳态耐久性试验数据,基于遗传算法(GA)-极限学习机(ELM)算法结合神经网络与遗传算法,搭建燃料电池稳态耐久性能预测模型。该模型为双输入[时间和电流(或电流密度)]单输出(电压)。利用试验数据对建立的模型进行训练与验证,发现该模型具有较高的预测精度。将GA-ELM模型与长短记忆网络(LSTM)模型对比,在预测精度(误差2%左右)相当的情况下,GA-ELM模型计算时间仅为LSTM模型的1/5。搭建的预测模型具有较好的通用性、较高的稳定性和精度。 展开更多
关键词 燃料电池堆 稳态性能预测 极限学习(ELM)神经网络
下载PDF
前交叉韧带断裂后足底压力特征的聚类分析 被引量:7
5
作者 李晓理 黄红拾 +2 位作者 王杰 于媛媛 敖英芳 《自动化学报》 EI CSCD 北大核心 2017年第3期418-429,共12页
运动过程中,人体的步态特征可以在足底压力图像上有准确的记录,而这也就可以成为判断步态正常与否的一条有效依据.通过一组压力传感器阵列获取人体运动过程的足底压力分布数据,提取步态的运动学和动力学特性.在此基础上,采用极限学习机(... 运动过程中,人体的步态特征可以在足底压力图像上有准确的记录,而这也就可以成为判断步态正常与否的一条有效依据.通过一组压力传感器阵列获取人体运动过程的足底压力分布数据,提取步态的运动学和动力学特性.在此基础上,采用极限学习机(Extreme learning machines,ELM)神经网络聚类算法对足底压力数据进行分析,完成正常与异常步态的分类辨识工作.本文从实际临床数据出发,对前交叉韧带断裂患者进行步态分析,并据医生的临床诊断结果进行校验.该方法在步态分析上取得了较为良好的效果,仿真结果表明了其有效性. 展开更多
关键词 足底压力 步态特征 极限学习机神经网络 前交叉韧带断裂 聚类分析
下载PDF
三电平光伏逆变器故障诊断研究
6
作者 胡超 姜媛媛 凌子俊 《科技视界》 2014年第31期82-82,共1页
本文通过对三电平光伏逆变器的故障类型和当前常用的故障诊断方法进行分析,将不同故障诊断方法的优劣进行对比,发现当前的故障诊断方法存在一定的缺陷;提出一种基于小波变换和极限学习机神经网络相结合的逆变器故障诊断方法,该方法可实... 本文通过对三电平光伏逆变器的故障类型和当前常用的故障诊断方法进行分析,将不同故障诊断方法的优劣进行对比,发现当前的故障诊断方法存在一定的缺陷;提出一种基于小波变换和极限学习机神经网络相结合的逆变器故障诊断方法,该方法可实现对三电平光伏逆变器多模式故障的诊断。通过仿真实验,验证该方法的正确性和有效性。 展开更多
关键词 三电平光伏逆变器 故障诊断 小波变换 极限学习机神经网络
下载PDF
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
7
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
下载PDF
基于数据驱动的配电网光伏双层优化调控策略 被引量:13
8
作者 史晨豪 唐忠 +2 位作者 魏敏捷 李征南 陈寒 《电力建设》 北大核心 2020年第3期62-70,共9页
高渗透分布式电源接入后,对配电网电压和网损的优化提出了更高的要求。而传统的集中式控制缺少大量的量测设备和通信设备,导致数据采集不完整,优化模型不精确,难以满足大规模光伏并网的运行要求。所以文章构建了一种双层优化模型来改善... 高渗透分布式电源接入后,对配电网电压和网损的优化提出了更高的要求。而传统的集中式控制缺少大量的量测设备和通信设备,导致数据采集不完整,优化模型不精确,难以满足大规模光伏并网的运行要求。所以文章构建了一种双层优化模型来改善传统集中式控制的不足;在概率优化的电气距离矩阵的基础上,使用蚁群聚类进行有效分区和主导节点选择,以此分区将传统的配电网二级控制引入第1层模型,然后利用基于粒子群算法优化极限学习机(particle swarm optimization extreme learning machine,PSO-ELM)神经网络挖掘并拟合配电网参数数据之间的函数关系,对第1层控制模型进行反复迭代修正。最后,在IEEE-33节点上进行仿真计算,验证了该模型对于配电网电压和光伏出力调控的有效性。 展开更多
关键词 集中式控制 双层优化 蚁群聚类 粒子群-极限学习机神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部