期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
应用极限差值法优化设计极薄规格冷轧带钢规程
1
作者 陈建兵 许健勇 沈耀 《钢铁》 CAS CSCD 北大核心 2009年第2期48-51,共4页
论证分析了传统方法设计冷轧规程,特别是极薄规格规程时迭代过程容易发散的原因。提出应用极限差值法优化设计冷轧规程,结合显式轧制力公式,规避了迭代发散问题,可用于各种目标函数下的规程优化设计。实例验证迭代计算13次即可得到满足... 论证分析了传统方法设计冷轧规程,特别是极薄规格规程时迭代过程容易发散的原因。提出应用极限差值法优化设计冷轧规程,结合显式轧制力公式,规避了迭代发散问题,可用于各种目标函数下的规程优化设计。实例验证迭代计算13次即可得到满足工程精度的优化规程;与现场实际参数对比,最大偏差在7%以内,相比简易有限元方法20%的偏差大为改进,同时不受初始值设置限制,迭代不会发散,特别适合极薄规格冷轧带钢规程优化设计。 展开更多
关键词 轧制规范 优化设计 极限差值 模型 显式公式
原文传递
滑轮绳槽直径与钢丝绳直径匹配关系的探讨 被引量:5
2
作者 吕英臣 《金属制品》 2003年第6期49-51,共3页
钢丝绳能否顺利工作并达到正常使用寿命 ,与滑轮绳槽直径有很大关系。绳槽、钢丝绳磨损后 ,实际测得的绳槽直径与钢丝绳直径的实际差值 ,若小于绳槽直径与钢丝绳直径间的最大极限差值且大于最小极限差值 ,则确定钢丝绳能正常工作 ;如果... 钢丝绳能否顺利工作并达到正常使用寿命 ,与滑轮绳槽直径有很大关系。绳槽、钢丝绳磨损后 ,实际测得的绳槽直径与钢丝绳直径的实际差值 ,若小于绳槽直径与钢丝绳直径间的最大极限差值且大于最小极限差值 ,则确定钢丝绳能正常工作 ;如果实际差值大于最大极限差值或小于最小极限差值 ,可确定钢丝绳不能正常工作。钢丝绳公称直径单位应统一 ,以免影响钢丝绳正常工作和使用寿命。 展开更多
关键词 钢丝绳 滑轮绳槽 公称直径 极限差值 匹配 使用寿命
下载PDF
Almost Sure Asymptotics for Extremes of Non-stationary Gaussian Random Fields 被引量:1
3
作者 Zhongquan TAN Yuebao Yuebao WANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第1期125-138,共14页
In this paper, the authors prove an almost sure limit theorem for the maxima of non-stationary Caussian random fields under some mild conditions related to the covariance functions of the Gaussian fields. As the by-pr... In this paper, the authors prove an almost sure limit theorem for the maxima of non-stationary Caussian random fields under some mild conditions related to the covariance functions of the Gaussian fields. As the by-products, the authors also obtain several weak convergence results which extended the existing results. 展开更多
关键词 Almost sure limit theorcm EXTREMES Gaussian random fields Non-stationary
原文传递
Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime 被引量:1
4
作者 BAO WeiZhu CAI YongYong +1 位作者 JIA XiaoWei YIN Jia 《Science China Mathematics》 SCIE CSCD 2016年第8期1461-1494,共34页
We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0... We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0 〈 ε〈〈1 which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e., there are propagating waves with wavelength O( ε^2) and O(1) in time and space, respectively. We begin with the conservative Crank-Nicolson finite difference (CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size h and time step τ- as well as the small parameter 0 〈 ε≤1 Based on the error bound, in order to obtain 'correct' numerical solutions in the nonrelativistic limit regime, i.e., 0 〈 ε≤1 , the CNFD method requests the ε-scalability: τ- = O(ε3) and h = O(√ε). Then we propose and analyze two numerical methods for the discretization of NLDE by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time- splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε-scalability is improved to τ = O(ε2) and h = O(1) when 0 〈 ε 〈〈 1. Extensive numerical results are reported to confirm our error estimates. 展开更多
关键词 nonlinear Dirac equation nonrelativistic limit regime Crank-Nicolson finite difference method exponential wave integrator time splitting spectral method ^-scalability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部