There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consumin...There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consuming. Modeling, buckling behaviors and ultimate strength prediction of stiffened panels were investigated. The modeling specification including nonlinear finite element model and imperfections generation, and post-buckling analysis procedure of stiffened plates were demonstrated. And a software tool using set-based finite element method was developed and executed in the MSC. Marc environment. Different types of stiffen panels of marine structures have been employed to investigate the buckling behavior and assess the validity in the estimation of ultimate strength. A comparison between results of the generally accepted methods, experiments and the software tool developed was demonstrated. It is shown that the software tool can predict the ultimate capacity of stiffened panels with imperfections with a good accuracy.展开更多
We propose a low complexity robust beamforming method for the general-rank signal model, to combat against mismatches of the desired signal array response and the received signal covariance matrix. The proposed beamfo...We propose a low complexity robust beamforming method for the general-rank signal model, to combat against mismatches of the desired signal array response and the received signal covariance matrix. The proposed beamformer not only considers the norm bounded uncertainties in the desired and received signal covariance matrices, but also includes an additional positive semidefinite constraint on the desired signal covariance matrix. Based on the worst-case performance optimization criterion, a computationally simple closed-form weight vector is obtained. Simulation results verify the validity and robustness of the proposed beamforming method.展开更多
基金Projects(51575535,51805551)supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2018-15)supported by the of State Key Laboratory of High Performance Complex Manufacturing,China+1 种基金Project(2015CX002)supported by the Innovation-driven Plan in Central South University,ChinaProject(2018BB30501)supported by the Key R&D Program of Liuzhou City,China
文摘There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consuming. Modeling, buckling behaviors and ultimate strength prediction of stiffened panels were investigated. The modeling specification including nonlinear finite element model and imperfections generation, and post-buckling analysis procedure of stiffened plates were demonstrated. And a software tool using set-based finite element method was developed and executed in the MSC. Marc environment. Different types of stiffen panels of marine structures have been employed to investigate the buckling behavior and assess the validity in the estimation of ultimate strength. A comparison between results of the generally accepted methods, experiments and the software tool developed was demonstrated. It is shown that the software tool can predict the ultimate capacity of stiffened panels with imperfections with a good accuracy.
基金supported by the Fundamental Research Funds for the Central Universities,China(No.K5051202047)
文摘We propose a low complexity robust beamforming method for the general-rank signal model, to combat against mismatches of the desired signal array response and the received signal covariance matrix. The proposed beamformer not only considers the norm bounded uncertainties in the desired and received signal covariance matrices, but also includes an additional positive semidefinite constraint on the desired signal covariance matrix. Based on the worst-case performance optimization criterion, a computationally simple closed-form weight vector is obtained. Simulation results verify the validity and robustness of the proposed beamforming method.