For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out s...For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out scale model test to establish a distortion model similar to the real ship structure under combined load. A similarity criterion for ship distortion model under the combined action of bending moment and surface pressure was proposed, and the scale effect for the criterion was verified by a se ries of numerical analysis and model tests. The results show that the similarity criterion for ship distor tion model under combined loads has a certain scale effect. For the model tests of ship cabin struc tures, it is suggested that the scale range between the plate thickness scale and the main dimension scale should be controlled within 2:1, which can be used as a reference for distortion model design and ultimate strength test of large-scale ship structures.展开更多
First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus bou...First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus boundary of Al3Se in Al-Sc alloy, and the interface energy of Al/θ" in Al-Cu alloys. Results show that applying tensile strain/stress during conventional aging can significantly decrease the solubility entropy, by red-shifting the phonon DOS at high states. The resulted solvus boundary would shift up on the phase diagram, suggesting a reduced solubility limit and an increased maximum possible precipitation volume of AlaSc in Al-Sc alloy. Moreover, the applied strain/stress has different impacts on the formation energies of different orientated Al/θ" interfaces in Al-Cu alloys, which can be further exaggerated by the Poisson effect, and eventually affect the preferential precipitation orientation in Al-Cu alloy. Both mechanisms are expected to play important roles during stress/strain aging.展开更多
The Casimir effect of a piston for massless scalar fields which satisfy Dirichlet boundary conditions in the context of five-dimensional Randall- Sundrum models is studied. In these scenarios we derive and calculate t...The Casimir effect of a piston for massless scalar fields which satisfy Dirichlet boundary conditions in the context of five-dimensional Randall- Sundrum models is studied. In these scenarios we derive and calculate the expression for the Casimir force on the piston. We also discuss the Casimir force in the limit that one outer plate is moved to the remote place to show that the nature of the reduced force between the parallel plates left. In the Randall^undrum model involving two branes the two plates attract each other when they locate very closely, but the reduced Casimir force turns to be repulsive as the plates separation is not extremely tiny, which is against the experimental phenomena, meaning that the RSI model can not be acceptable. In the case of one brane model the shape of the reduced Casimir force is similar to that of the standard two-parallel-system in the four-dimensional fiat spacetimes while the sign of force remains negative.展开更多
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schr...Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schroedinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schroedinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.展开更多
Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it ...Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil展开更多
By simulating with finite-difference time-domain(FDTD) method, it is proved that two kinds of new photonic crystal slab(PCS) structures could enhance the light extraction efficiency of OLED. By comparing the results, ...By simulating with finite-difference time-domain(FDTD) method, it is proved that two kinds of new photonic crystal slab(PCS) structures could enhance the light extraction efficiency of OLED. By comparing the results, the most effective PCS structure with maximum light extraction efficiency(E_ r =1.99) is got. The optimized geometric parameters and optimized performance parameters of the PCS structures are also obtained.展开更多
Composite one-way concrete slabs with profiled steel sheeting as permanent formwork are commonly used in the construction industry. The steel sheeting supports the wet concrete of a cast-in-situ reinforced or post-ten...Composite one-way concrete slabs with profiled steel sheeting as permanent formwork are commonly used in the construction industry. The steel sheeting supports the wet concrete of a cast-in-situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel sheeting is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the longitudinal shear capacity of each type of steel decking using full-scale tests. This paper presents the results of the short-term testing up to failure of two types of profiled steel decking that are commonly used in the construction industry in Australia. Fourteen full-scale, simply-supported slabs were tested in four-point bending with shear spans of either span/4 or span/6. Four slabs were tested at age of 28 days and the other 10 slabs were subjected to drying shrinkage and various levels of sustained loads for a period of at least 6 months prior to testing to failure. The effects of creep and drying shrinkage on the load carrying capacity and deformation of the slabs at ultimate loads are presented and discussed. The bond-slip relationship of each slab is determined from the test data and the values of maximum longitudinal shear stress calculated using different methods are described and compared.展开更多
To get the actual ultimate bearing capacity of concrete dam, the effect of geometric nonlinearity and strain softening on it, which appears in the failure process of concrete dam, is studied. Overload method is adopte...To get the actual ultimate bearing capacity of concrete dam, the effect of geometric nonlinearity and strain softening on it, which appears in the failure process of concrete dam, is studied. Overload method is adopted to obtain the bearing capacity of a concrete dam by taking into consideration strain softening in the material constitutive law, geometric nonlinearity in geometric equation and equilibrium differential equation. Arc-length method is used to find the extreme point and descending branch of the load-displacement curve of the dam. The results present that the effect cannot be ignored. And geometric nonlinearity of structure and strain softening of materials should be considered for numerical analysis of ultimate bearing capacity of a concrete dam.展开更多
The authors investigate the global existence and semiclassical limit of weak solutions to a sixth-order parabolic system,which is a quantum-corrected macroscopic model derived recently to simulate the quantum effects ...The authors investigate the global existence and semiclassical limit of weak solutions to a sixth-order parabolic system,which is a quantum-corrected macroscopic model derived recently to simulate the quantum effects in miniaturized semiconductor devices.展开更多
In this paper, a one-dimensional bipolar Euler-Poisson system (a hydrodynamic model) from semiconductors or plasmas with boundary effects is considered. This system takes the form of Euler-Poisson with an electric f...In this paper, a one-dimensional bipolar Euler-Poisson system (a hydrodynamic model) from semiconductors or plasmas with boundary effects is considered. This system takes the form of Euler-Poisson with an electric field and frictional damping added to the momentum equations. The large-time behavior of uniformly bounded weak solutions to the initial-boundary value problem for the one-dimensional bipolar Euler-Poisson system is firstly presented. Next, two particle densities and the corresponding current momenta are verified to satisfy the porous medium equation and the classical Darcy's law time asymp- totically. Finally, as a by-product, the quasineutral limit of the weak solutions to the initial-boundary value problem is investigated in the sense that the bounded L∞ entropy solution to the one-dimensional bipolar Euler-Poisson system converges to that of the cor- responding one-dimensional compressible Euler equations with damping exponentially fast as t → +∞. As far as we know, this is the first result about the asymptotic behavior and the quasineutral limit for the one-dimensional bipolar Euler-Poisson system with boundary effects and a vacuum.展开更多
文摘For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out scale model test to establish a distortion model similar to the real ship structure under combined load. A similarity criterion for ship distortion model under the combined action of bending moment and surface pressure was proposed, and the scale effect for the criterion was verified by a se ries of numerical analysis and model tests. The results show that the similarity criterion for ship distor tion model under combined loads has a certain scale effect. For the model tests of ship cabin struc tures, it is suggested that the scale range between the plate thickness scale and the main dimension scale should be controlled within 2:1, which can be used as a reference for distortion model design and ultimate strength test of large-scale ship structures.
基金Project(51171211)supported by the National Natural Science Foundation of ChinaProject(2014CB644001-2)supported by the National Basic Research Program of China
文摘First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus boundary of Al3Se in Al-Sc alloy, and the interface energy of Al/θ" in Al-Cu alloys. Results show that applying tensile strain/stress during conventional aging can significantly decrease the solubility entropy, by red-shifting the phonon DOS at high states. The resulted solvus boundary would shift up on the phase diagram, suggesting a reduced solubility limit and an increased maximum possible precipitation volume of AlaSc in Al-Sc alloy. Moreover, the applied strain/stress has different impacts on the formation energies of different orientated Al/θ" interfaces in Al-Cu alloys, which can be further exaggerated by the Poisson effect, and eventually affect the preferential precipitation orientation in Al-Cu alloy. Both mechanisms are expected to play important roles during stress/strain aging.
基金Supported by the Natural Science Foundation of China under Grant No.10875043the Shanghai Research Foundation under Grant No.07dz22020
文摘The Casimir effect of a piston for massless scalar fields which satisfy Dirichlet boundary conditions in the context of five-dimensional Randall- Sundrum models is studied. In these scenarios we derive and calculate the expression for the Casimir force on the piston. We also discuss the Casimir force in the limit that one outer plate is moved to the remote place to show that the nature of the reduced force between the parallel plates left. In the Randall^undrum model involving two branes the two plates attract each other when they locate very closely, but the reduced Casimir force turns to be repulsive as the plates separation is not extremely tiny, which is against the experimental phenomena, meaning that the RSI model can not be acceptable. In the case of one brane model the shape of the reduced Casimir force is similar to that of the standard two-parallel-system in the four-dimensional fiat spacetimes while the sign of force remains negative.
文摘Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schroedinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schroedinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
基金Foundation item: Project(2013CB036405) supported by the National Basic Research Program of China Project(KZZD-EW-05) supported by the Key Research Program of the Chinese Academy of Sciences
文摘Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil
文摘By simulating with finite-difference time-domain(FDTD) method, it is proved that two kinds of new photonic crystal slab(PCS) structures could enhance the light extraction efficiency of OLED. By comparing the results, the most effective PCS structure with maximum light extraction efficiency(E_ r =1.99) is got. The optimized geometric parameters and optimized performance parameters of the PCS structures are also obtained.
文摘Composite one-way concrete slabs with profiled steel sheeting as permanent formwork are commonly used in the construction industry. The steel sheeting supports the wet concrete of a cast-in-situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel sheeting is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the longitudinal shear capacity of each type of steel decking using full-scale tests. This paper presents the results of the short-term testing up to failure of two types of profiled steel decking that are commonly used in the construction industry in Australia. Fourteen full-scale, simply-supported slabs were tested in four-point bending with shear spans of either span/4 or span/6. Four slabs were tested at age of 28 days and the other 10 slabs were subjected to drying shrinkage and various levels of sustained loads for a period of at least 6 months prior to testing to failure. The effects of creep and drying shrinkage on the load carrying capacity and deformation of the slabs at ultimate loads are presented and discussed. The bond-slip relationship of each slab is determined from the test data and the values of maximum longitudinal shear stress calculated using different methods are described and compared.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2007CB714104)the National Natural Science Foundation of China (Grant Nos. 51079045 and 50779009)
文摘To get the actual ultimate bearing capacity of concrete dam, the effect of geometric nonlinearity and strain softening on it, which appears in the failure process of concrete dam, is studied. Overload method is adopted to obtain the bearing capacity of a concrete dam by taking into consideration strain softening in the material constitutive law, geometric nonlinearity in geometric equation and equilibrium differential equation. Arc-length method is used to find the extreme point and descending branch of the load-displacement curve of the dam. The results present that the effect cannot be ignored. And geometric nonlinearity of structure and strain softening of materials should be considered for numerical analysis of ultimate bearing capacity of a concrete dam.
基金Project supported by the National Natural Science Foundation of China (Nos. 10871112, 10771008)the Research Fund for the Doctoral Program of Higher Education of China (No. 20090005120009)+1 种基金 the Fundamental Research Funds for the Central Universities (No. BUPT2009RC0702)the Talents Scheme Funds of BUPT
文摘The authors investigate the global existence and semiclassical limit of weak solutions to a sixth-order parabolic system,which is a quantum-corrected macroscopic model derived recently to simulate the quantum effects in miniaturized semiconductor devices.
基金supported by the National Natural Science Foundation of China(No.11171223)the Innovation Program of Shanghai Municipal Education Commission(No.13ZZ109)
文摘In this paper, a one-dimensional bipolar Euler-Poisson system (a hydrodynamic model) from semiconductors or plasmas with boundary effects is considered. This system takes the form of Euler-Poisson with an electric field and frictional damping added to the momentum equations. The large-time behavior of uniformly bounded weak solutions to the initial-boundary value problem for the one-dimensional bipolar Euler-Poisson system is firstly presented. Next, two particle densities and the corresponding current momenta are verified to satisfy the porous medium equation and the classical Darcy's law time asymp- totically. Finally, as a by-product, the quasineutral limit of the weak solutions to the initial-boundary value problem is investigated in the sense that the bounded L∞ entropy solution to the one-dimensional bipolar Euler-Poisson system converges to that of the cor- responding one-dimensional compressible Euler equations with damping exponentially fast as t → +∞. As far as we know, this is the first result about the asymptotic behavior and the quasineutral limit for the one-dimensional bipolar Euler-Poisson system with boundary effects and a vacuum.