勒索病毒、僵尸网络等恶意软件在互联网日益泛滥,已成为威胁网络安全运行的重要因素。域名作为恶意软件与命令和控制(Command and Control,C&C)服务器的主要通信方式,是检测和防范的重要途径。但域名生成算法(Domain Generation Alg...勒索病毒、僵尸网络等恶意软件在互联网日益泛滥,已成为威胁网络安全运行的重要因素。域名作为恶意软件与命令和控制(Command and Control,C&C)服务器的主要通信方式,是检测和防范的重要途径。但域名生成算法(Domain Generation Algorithm,DGA)的不断改进发展,给传统的基于威胁情报的检测方式带来了巨大挑战,而机器学习技术逐渐成为应对DGA域名的主要途径。梯度提升树算法作为机器学习中重要的分类算法,能够适应DGA域名检测场景。基于XGBoost框架,采用开放域名数据作为样本集,研究了基于梯度提升树算法的DGA域名检测方法,并通过域名向量转换、检测模型训练、参数调优,实现了一个高效的DGA域名检测模型。展开更多
针对当前快速准确获取叶面积指数(Leaf area index,LAI)时大部分遥感预测方法将光谱信息作为模型主要特征,忽略时序变化特征的问题,利用无人机搭载五通道多光谱相机获取研究区玉米不同生育期的影像数据,基于该数据计算玉米相应生育期植...针对当前快速准确获取叶面积指数(Leaf area index,LAI)时大部分遥感预测方法将光谱信息作为模型主要特征,忽略时序变化特征的问题,利用无人机搭载五通道多光谱相机获取研究区玉米不同生育期的影像数据,基于该数据计算玉米相应生育期植被指数,然后采用植被指数建立各生育期子模型,采用Shapley理论计算子模型均方根误差对全生育期模型均方根误差的贡献度,从而确定各子模型权重,根据权重组合形成具有LAI时序变化特征的估算模型,分别基于支持向量回归(SVR)、多层感知机(MLP)、随机森林(RF)和极限梯度提升树(XGBoost)算法构建组合估算模型。结果表明:采用Shapley理论构建的组合LAI估算模型估算效果优于直接构建的全生育期LAI估算模型。相较于SVRShapley、MLPShapley以及RFShapley模型,XGBoostShapley模型的估算效果最佳(R^(2)为0.97,RMSE为0.021,RPD为6.9)。将最优模型XGBoostShapley应用于研究区LAI预测,预测结果符合不同生育期玉米长势。本研究为大田玉米长势遥感监测提供了新的思路和方法。展开更多
文摘勒索病毒、僵尸网络等恶意软件在互联网日益泛滥,已成为威胁网络安全运行的重要因素。域名作为恶意软件与命令和控制(Command and Control,C&C)服务器的主要通信方式,是检测和防范的重要途径。但域名生成算法(Domain Generation Algorithm,DGA)的不断改进发展,给传统的基于威胁情报的检测方式带来了巨大挑战,而机器学习技术逐渐成为应对DGA域名的主要途径。梯度提升树算法作为机器学习中重要的分类算法,能够适应DGA域名检测场景。基于XGBoost框架,采用开放域名数据作为样本集,研究了基于梯度提升树算法的DGA域名检测方法,并通过域名向量转换、检测模型训练、参数调优,实现了一个高效的DGA域名检测模型。
文摘针对当前快速准确获取叶面积指数(Leaf area index,LAI)时大部分遥感预测方法将光谱信息作为模型主要特征,忽略时序变化特征的问题,利用无人机搭载五通道多光谱相机获取研究区玉米不同生育期的影像数据,基于该数据计算玉米相应生育期植被指数,然后采用植被指数建立各生育期子模型,采用Shapley理论计算子模型均方根误差对全生育期模型均方根误差的贡献度,从而确定各子模型权重,根据权重组合形成具有LAI时序变化特征的估算模型,分别基于支持向量回归(SVR)、多层感知机(MLP)、随机森林(RF)和极限梯度提升树(XGBoost)算法构建组合估算模型。结果表明:采用Shapley理论构建的组合LAI估算模型估算效果优于直接构建的全生育期LAI估算模型。相较于SVRShapley、MLPShapley以及RFShapley模型,XGBoostShapley模型的估算效果最佳(R^(2)为0.97,RMSE为0.021,RPD为6.9)。将最优模型XGBoostShapley应用于研究区LAI预测,预测结果符合不同生育期玉米长势。本研究为大田玉米长势遥感监测提供了新的思路和方法。