The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware archite...The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware architecture, based on which the finite difference (FD) wavefield-continuation depth migration can be conducted using the Graphics Processing Unit (GPU) as a CPU coprocessor. We demonstrate the program module and three key optimization steps for implementing FD depth migration: memory, thread structure, and instruction optimizations and consider evaluation methods for the amount of optimization. 2D and 3D models are used to test depth migration on the GPU. The tested results show that the depth migration computational efficiency greatly increased using the general-purpose GPU, increasing by at least 25 times compared to the AMD 2.5 GHz CPU.展开更多
In this paper, we propose an optical burst network architecture supporting the ge- netic mesh topology. The intermediate node architecture of the mesh network can be the same with current wavelength switching Wave- le...In this paper, we propose an optical burst network architecture supporting the ge- netic mesh topology. The intermediate node architecture of the mesh network can be the same with current wavelength switching Wave- length Division Multiplexing (WDM) net- works, and thus can reuse existing deployed infrastructure. We employ a novel Optical Time Slot Interchange (OTSI) at the source nodes for the first time to mitigate the burst conten- tion and to increase the bandwidth utilization. Time- and wavelength-domain reuse in the OTSI significantly saves optical components and red- uces blocking probability.展开更多
Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was es...Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating.展开更多
Thermal effects are incorporated into developed discrete layer mechanics for two-dimensional cylindrical shells structures. Finite element equations are developed according to layerwise theory of laminated structure. ...Thermal effects are incorporated into developed discrete layer mechanics for two-dimensional cylindrical shells structures. Finite element equations are developed according to layerwise theory of laminated structure. Following the layerwise theory, a variable kinematic model that incorporates mechanics and thermal conditions is also presented. The new element has a field of displacement compatible with the cylindrical shell element or plate and it can be used as a rigid element for this structural element.ln the laminate model construction, adjacent layers are arranged as bonded layers. The layer has a unique constant thickness that can be different to each layer. The fiber reinforced is used and the fibers in a laminate may be oriented arbitrarily. The shear stress is adopted equal to zero because the thin thickness, on the other hand, the normal stress is maintained in order to ensure the compatibility of stress in material. The previously authors of this methods neglect the implications of thermal effects on cylindrical shells structures. Thermal effects become important when the structure has to operate in either extremely hot or cold temperature environments. These extreme conditions may severely affect the response of structure in two distinct ways: (1) induction of thermal stresses due to differences in the coefficients of thermal expansion between the various composite plies and layers and (2) temperature dependence of the elastic properties. Only a limited amount of work has been reported concerning this topic. All in all, the main contribution of this work is the consideration of this kinematic for cylindrical shells that incorporate mechanics and thermal conditions. In addition, numerical results are presented to demonstrate the capability of the current formulation to represent the behavior of cylindrical shells with these characteristics.展开更多
Surface effects play an important role in the mechanical behavior of nanosized structural elements owing to the increased ratio of surface area to volume. The surface effects on the large deflection of nanowires were ...Surface effects play an important role in the mechanical behavior of nanosized structural elements owing to the increased ratio of surface area to volume. The surface effects on the large deflection of nanowires were considered. Both geometric nonlinearity in finite deformation and surface effects at nanoscale were taken into account to analyze the bending of nanowires subjected to a concentrated force. For simply supported beams and clamped-clamped beams, the influence of surface effects and geometric nonlinearity were discussed in detail. It is found that both surface effects and geometric nonlinearity tend to decrease the deflection of bending nanowires and thus increase the effective elastic modulus of nanowires. Surface effects yield the size dependent behavior of nanowires.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41104083 and 40804024) Fundamental Research Funds for the Central Universities (No, 2011YYL022)
文摘The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware architecture, based on which the finite difference (FD) wavefield-continuation depth migration can be conducted using the Graphics Processing Unit (GPU) as a CPU coprocessor. We demonstrate the program module and three key optimization steps for implementing FD depth migration: memory, thread structure, and instruction optimizations and consider evaluation methods for the amount of optimization. 2D and 3D models are used to test depth migration on the GPU. The tested results show that the depth migration computational efficiency greatly increased using the general-purpose GPU, increasing by at least 25 times compared to the AMD 2.5 GHz CPU.
文摘In this paper, we propose an optical burst network architecture supporting the ge- netic mesh topology. The intermediate node architecture of the mesh network can be the same with current wavelength switching Wave- length Division Multiplexing (WDM) net- works, and thus can reuse existing deployed infrastructure. We employ a novel Optical Time Slot Interchange (OTSI) at the source nodes for the first time to mitigate the burst conten- tion and to increase the bandwidth utilization. Time- and wavelength-domain reuse in the OTSI significantly saves optical components and red- uces blocking probability.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Railway of ChinaProject(2006FJ4233) supported by Hunan Postdoctoral Scientific Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University,China
文摘Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating.
文摘Thermal effects are incorporated into developed discrete layer mechanics for two-dimensional cylindrical shells structures. Finite element equations are developed according to layerwise theory of laminated structure. Following the layerwise theory, a variable kinematic model that incorporates mechanics and thermal conditions is also presented. The new element has a field of displacement compatible with the cylindrical shell element or plate and it can be used as a rigid element for this structural element.ln the laminate model construction, adjacent layers are arranged as bonded layers. The layer has a unique constant thickness that can be different to each layer. The fiber reinforced is used and the fibers in a laminate may be oriented arbitrarily. The shear stress is adopted equal to zero because the thin thickness, on the other hand, the normal stress is maintained in order to ensure the compatibility of stress in material. The previously authors of this methods neglect the implications of thermal effects on cylindrical shells structures. Thermal effects become important when the structure has to operate in either extremely hot or cold temperature environments. These extreme conditions may severely affect the response of structure in two distinct ways: (1) induction of thermal stresses due to differences in the coefficients of thermal expansion between the various composite plies and layers and (2) temperature dependence of the elastic properties. Only a limited amount of work has been reported concerning this topic. All in all, the main contribution of this work is the consideration of this kinematic for cylindrical shells that incorporate mechanics and thermal conditions. In addition, numerical results are presented to demonstrate the capability of the current formulation to represent the behavior of cylindrical shells with these characteristics.
基金Project(11072186)supported by the National Natural Science Foundation of China
文摘Surface effects play an important role in the mechanical behavior of nanosized structural elements owing to the increased ratio of surface area to volume. The surface effects on the large deflection of nanowires were considered. Both geometric nonlinearity in finite deformation and surface effects at nanoscale were taken into account to analyze the bending of nanowires subjected to a concentrated force. For simply supported beams and clamped-clamped beams, the influence of surface effects and geometric nonlinearity were discussed in detail. It is found that both surface effects and geometric nonlinearity tend to decrease the deflection of bending nanowires and thus increase the effective elastic modulus of nanowires. Surface effects yield the size dependent behavior of nanowires.