In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS relia...In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec- tion and correction process, a CBS integration testing model is sketched by multi-queue muhichannel and finite server queuing model (MMFSQM). Compared with the analytical method based on pa- rameters and other nonparametric approaches, the simulation approach can relax more of the usual reliability modeling assumptions and effectively expound integration testing process of CBS. Then, CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap- proach is validated to be sound and effective by simulation experiment studies and analysis.展开更多
This paper introduces the background,illustrates the hardware structure and software features of malicious base station,explains its work principle,presents a method of detecting malicious base station,analyses the ex...This paper introduces the background,illustrates the hardware structure and software features of malicious base station,explains its work principle,presents a method of detecting malicious base station,analyses the experiment and evaluates the experimental results to verify the reliability of this method.Finally proposes the future work.展开更多
Chloride-induced corrosion of the reinforcement is considered as one of the major mechanisms resulting in the reduction of structural resistance of reinforced concrete structural elements located in marine and other a...Chloride-induced corrosion of the reinforcement is considered as one of the major mechanisms resulting in the reduction of structural resistance of reinforced concrete structural elements located in marine and other aggressive environments. A study of reinforced concrete structures located at the Fangcheng dock in the Beibu Gulf port, China, was present. The result from field survey indicates that the concrete cover depth and chloride diffusion coefficient fit best normal distribution and lognormal distribution, respectively. The service life of structure is about 55 a, while initiation time is 45 a. Sensitivity analysis indicates that the most influential factor of the structure service life prediction is concrete cover, followed by diffusion coefficient, diffusion decay index, critical chloride concentration, surface chloride concentration, current density and localized pitting corrosion. Finally, the effects of diffusion decay index and critical chloride concentration on structure service life prediction are discussed.展开更多
Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typical...Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typically possible. These deployment architectures can have significant impacts on system reliability. However, existing reliability estimation approaches are typically limited to certain classes or exclusively concentrate on software reliability, neglecting the influence of hardware resources, software deployment and architectural styles. The selection of an appropriate architectural style has a significant impact on system reliability of the target system. Therefore, we propose a novel software architecture (SA) based reliability estimation model incorporating software deployment and architectural style. On the basis of two architectural styles, we design influence factors and present a new approach to calculate system reliability. Experimental results show that influence factors provide an accurate and simple method of reflecting architectural styles and software deployment on system reliability. It is important for considering the influence of other architectural styles on system reliability in large scale deployment environment.展开更多
Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-...Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-propagation reliability model(CBPRM)with low complexity for the complex software system reliability evaluation is presented in this paper.The proposed model is based on the artificial neural networks and the component reliability sensitivity analyses.These analyses are performed dynamically and assigned to the neurons to optimize the reliability evaluation.CBPRM has a linear increasing complexity and outperforms the state-based and the path-based reliability models.Another advantage of CBPRM over others is its robustness.CBPRM depends on the component reliabilities and the correlative sensitivities,which are independent from the software system structure.Based on the theory analysis and experiment results,it shows that the complexity of CBPRM is evidently lower than the contrast models and the reliability evaluating accuracy is acceptable when the software system structure is complex.展开更多
All technical objects are at risk of damages during the consecutive years of their usage. Reliability of an object is an essential issue during its usage. The main problem is the strive to eliminate damage formation. ...All technical objects are at risk of damages during the consecutive years of their usage. Reliability of an object is an essential issue during its usage. The main problem is the strive to eliminate damage formation. Predicting the reliability of an object should allow qualitative and quantitative analysis of the possibility of occurrence of unfavorable events. The adaptation of mathematical models describing the degradation processes in mechanical and electronic devices creates opportunities to develop diagnostic standards for buildings erected in traditional technology. The article presents the methodology of prediction of reliability of a building, and the values of performance features are defined by the parameters of the Weibull distribution function.展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2008AA01A201)the National Nature Science Foundation of China(No.60503015,90818016)
文摘In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec- tion and correction process, a CBS integration testing model is sketched by multi-queue muhichannel and finite server queuing model (MMFSQM). Compared with the analytical method based on pa- rameters and other nonparametric approaches, the simulation approach can relax more of the usual reliability modeling assumptions and effectively expound integration testing process of CBS. Then, CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap- proach is validated to be sound and effective by simulation experiment studies and analysis.
文摘This paper introduces the background,illustrates the hardware structure and software features of malicious base station,explains its work principle,presents a method of detecting malicious base station,analyses the experiment and evaluates the experimental results to verify the reliability of this method.Finally proposes the future work.
基金Project(41274012) supported by the National Natural Science Foundation of China
文摘Chloride-induced corrosion of the reinforcement is considered as one of the major mechanisms resulting in the reduction of structural resistance of reinforced concrete structural elements located in marine and other aggressive environments. A study of reinforced concrete structures located at the Fangcheng dock in the Beibu Gulf port, China, was present. The result from field survey indicates that the concrete cover depth and chloride diffusion coefficient fit best normal distribution and lognormal distribution, respectively. The service life of structure is about 55 a, while initiation time is 45 a. Sensitivity analysis indicates that the most influential factor of the structure service life prediction is concrete cover, followed by diffusion coefficient, diffusion decay index, critical chloride concentration, surface chloride concentration, current density and localized pitting corrosion. Finally, the effects of diffusion decay index and critical chloride concentration on structure service life prediction are discussed.
文摘Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typically possible. These deployment architectures can have significant impacts on system reliability. However, existing reliability estimation approaches are typically limited to certain classes or exclusively concentrate on software reliability, neglecting the influence of hardware resources, software deployment and architectural styles. The selection of an appropriate architectural style has a significant impact on system reliability of the target system. Therefore, we propose a novel software architecture (SA) based reliability estimation model incorporating software deployment and architectural style. On the basis of two architectural styles, we design influence factors and present a new approach to calculate system reliability. Experimental results show that influence factors provide an accurate and simple method of reflecting architectural styles and software deployment on system reliability. It is important for considering the influence of other architectural styles on system reliability in large scale deployment environment.
基金Supported by the National Natural Science Foundation of China(No.60973118,60873075)
文摘Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-propagation reliability model(CBPRM)with low complexity for the complex software system reliability evaluation is presented in this paper.The proposed model is based on the artificial neural networks and the component reliability sensitivity analyses.These analyses are performed dynamically and assigned to the neurons to optimize the reliability evaluation.CBPRM has a linear increasing complexity and outperforms the state-based and the path-based reliability models.Another advantage of CBPRM over others is its robustness.CBPRM depends on the component reliabilities and the correlative sensitivities,which are independent from the software system structure.Based on the theory analysis and experiment results,it shows that the complexity of CBPRM is evidently lower than the contrast models and the reliability evaluating accuracy is acceptable when the software system structure is complex.
文摘All technical objects are at risk of damages during the consecutive years of their usage. Reliability of an object is an essential issue during its usage. The main problem is the strive to eliminate damage formation. Predicting the reliability of an object should allow qualitative and quantitative analysis of the possibility of occurrence of unfavorable events. The adaptation of mathematical models describing the degradation processes in mechanical and electronic devices creates opportunities to develop diagnostic standards for buildings erected in traditional technology. The article presents the methodology of prediction of reliability of a building, and the values of performance features are defined by the parameters of the Weibull distribution function.